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1. Track-aligned Extents 

 Based on disk-specific knowledge about disk data layout 

 

 allocating and accessing  

 related data  

 on disk track boundaries 

 

 system avoids most  

 rotational latency  

 and  

 track crossing overheads.  

 

 Avoiding these overheads  

 can increase disk access efficiency  

 by up to 50% for mid-sized requests (100–500 KB).  



Slide 4 of 58 embeded 

Head Switch time 

 Head switch. A head switch occurs  

 when a single request accesses a sequence of LBNs  

 whose on-disk locations span two tracks. 

 

 

 

 

 

 

 

 

 

 

 Even compared to other disk characteristics,  

 head switch 

 time has improved little in the past decade. 
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Zero-latency access 

 With zero-latency access support, disk firmware can read the N 

sectors, from the media into its buffers, in any order 

 In the best case of reading exactly one track,  

 the head can start reading data as soon as the seek is completed;  

 no rotational latency is involved  

 because all sectors on the track are needed. 

 

 



Slide 6 of 58 embeded 

Timing 
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Implementation 

 Detecting track boundaries.  

 This task is more difficult than might be expected, because of:  

 1.   zoned recording 

 2.  media defect management 

 

 

 set of changes needed  

 to use track boundary knowledge  

 in an existing file system.  

 Grouping (for block-based FS, like ext3) 

 Allocation of track-aligned extents 

 Very convenient for extent-based FS (like XFS, NTFS)  
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Performance improvements 

 For large-file workloads,  

 a version of FreeBSD’s FFS implementation  

 that exploits traxtents  

 reduces application run times by up to 20%  

 compared to the original version.  

 

 A video server using traxtent-based requests  

 can support 56% more concurrent streams  

 at the same startup latency and buffer space.  

 

 For LFS,  

 44% lower overall write cost  

 for track-sized segments  

 can be achieved 
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Results 
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2. Exploiting Disk Bandwidth for Small Files 

 C-FFS (Co-locating Fast File System),  

 introduces 2 techniques,  

 for exploiting disk bandwidth for small files and metadata 

 1. embedded inodes   

 2. explicit grouping 
 

 1. embedded inodes  

 inodes for most files  

 are stored in the directory  

with the corresponding name, (in FCB) 

 removing a physical level of indirection  

without sacrificing the logical level of indirection. 

 

 2. explicit grouping  

 data blocks of multiple small files named by a given directory are 

  allocated adjacently and  

moved to and from the disk  

 as a unit in most cases. 
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Embedded inodes 

 
F1-F5 blocks 

from same file 
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Explicit grouping 

 Explicit grouping  

 places the data blocks of multiple files  

 at adjacent disk locations 

 accesses them as a single unit most of the time  

 

 To decide which small files to co-locate,  

 C-FFS exploits the inter-file relationships  

 indicated by the name space. 

 

 Specifically, C-FFS groups files  

 whose inodes are embedded  

 in the same directory. 

 

 As a result,  

 explicit grouping has the potential  

 to improve small file performance  

 by an order of magnitude  

 over conventional file system implementations.  
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Performances 
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03. Disk Shuffling 

 Adapting disk layouts to observed, rather than predicted, access patterns can 
result in faster I/O operations. In particular, a technique called disk shuffling, 
which moves frequently-accessed data into the center of a disk, can 
substantially reduce mean seek distances. We report here on extensions to 
and (partial) validation of earlier work on this approach at the University of 
Maryland. 

 Starting from disk access traces obtained during normal system use of 4.2BSD-
based file systems, we established a repeatable simulation environment across a 
range of workloads and disk types for comparing different shuffling algorithms. 
We explored several of these, including how often to make layout changes, how 
large a unit of data to shuffle, and some mechanisms to exploit sequentiality of 
reference. 

 Our conclusions: some of the originally identified benefits are real, but sometimes 
performance is worse rather than better unless access interdependencies are 
considered. 

 Most of the benefit can be obtained from infrequent (weekly) shuffling. Smaller 
quanta generally produce better results, at the expense of needing more working 
storage. 

 Overall, the benefits are small to moderate, but are likely to be much larger with 
file systems that do not do such a good job of initial data placement. 
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Disk Shufling 
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Principal 

 Grouping the most frequently-accessed data blocks together at the center 

of the disk can reduce the average seek distance substantially. A good 

way to do this is the organ pipe arrangement, formed by placing the most 

frequently accessed cylinder in the middle of the disk, the next most 

frequently accessed cylinders on either side of the middle cylinder, and 

so on. This arrangement is provably optimal for independent disk 

accesses [Wong83]. The effect of applying it to the disk shown in Figure 

1a is displayed in Figure 1b. 

 

 Moving the data around to achieve such an arrangement is known as 

disk shuffling. The algorithm is sufficiently straightforward that it can be 

done inside the disk controller, or inside the device driver.  

 

 In all cases, a count is kept of the number of requests directed to each 

shuffling quantum (e.g. cylinder) over a period of time, and these counts 

are used to drive the rearrangement.  
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Results 
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Other techniques 

 

 

 4. Log Approach 
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04. LFS 

 The fundamental idea of a log-structured file system 

 is to improve write performance by  

 buffering a sequence of file system changes in the file cache and  

 then writing all the changes to disk sequentially  

 in a single disk write operation. 
 

 The information written to disk in the write operation includes: 

 file data blocks  

 attributes  

 index blocks  

 directories 

 almost all the other information used to manage the file system.  
 

 For workloads that contain many small files,  

 a log-structured file system converts  

 many  small synchronous random writes of traditional file systems  

 into large asynchronous sequential transfers  

 that can utilize nearly 100% of the raw disk bandwidth. 
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3. LFS 

 whole disk = log (append only log) 

 called log-structured file system 

 

 LFS basic concept 

 Collect large number of written data in the cache 

 Put in the log in large sequential access 

 

 As files are modified,  

 both file data and header information 

 are appended to the log  

 in a sequential stream 

 without seeks.  

 

 if individual files are small  

 they can be collected into large blocks  

 before being written to the log.  
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3. LFS Benefits 

Fast recovery 

 

Temporal locality 

 

Versioning 
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3. LFS difficult issues 

 There are 3 difficult issues  

 that  

 must be resolved  

 to make log-structured file systems practical.  

 

 I. how to handle the occasional retrievals (reading)  

 that will be required from the log  

 

 II.  how to manage log wrap-around;  

 

 III. how to achieve efficient disk space utilization 
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Classical FS (adding new block) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 shows a traditional file system  

 with separate map and data areas;  

 a new data block is allocated and  

 the map is updated in place. 

new 

block 
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Log DATA (adding new block) 

 

 
 

 

 

 

 

 

 

 

 

 the data area has been made into a log:  

 each new data block gets added at the end of the log,  

 but map entries are still updated in place. 

new 

block 
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UNIX LFS 

 

 

 

 

files 
File info 
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LFS Segments under UNIX 

 

 A Log-Structured File System.  

 A file system is composed of segments as shown in Figure (a).  

 

 Each segment consists of  

 a summary block followed by  

 data blocks and inode blocks (b).  
 

 The segment summary contains  

 checksums to validate both the segment summary and the data blocks,  

 a timestamp,  

 a pointer to the next segment, and  

 information that describes  

 each file and inode that appears in the segment  (c). 

 

 Files are described by FINFO structures  

 that identify the inode number and  

 version of the file (as well as each block of that file)  

 located in the segment (d). 
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Wrap-around 

 

 

new data  

live data  
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Performance Comparisons 

 LFS  will outperform 

 other file systems  

 for writes.  
 

 In looking for weaknesses of LFS approach,  

 it thus makes most sense  

 to look at reads that miss in the file cache.  
 

 For small files,  

 a log-structured file system  

 will have read performance  

 at least as good as today’s file systems 
 

 In the worst case, one seek will be required for the file map and one for 
the file data.  

 With a little cleverness in the log management,  

 it should be possible to write the file map  

 close to the file data  

 so they can both be retrieved with a single seek.  

 This would result in 2x better performance than current file systems. 
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Large file reading (file written at once) 

 For large-file reads, there are 2 cases to consider.  

 

 1. The simplest case is files that are written all-at-once.  

 

 These files will be contiguous in the log,  

 which allows  them to be read  

 at least as efficiently as today’s best file systems  

 (particularly if the file map is written next to the data in the log).  

 

 Random-access reads to such a file will require seeks,  

 but no more in a log-structured file system  

 than in a traditional file system. 
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Large access (file written piece-wise)  

 2. The second case for large files consists of those that are written 

piece-wise, either  

 by gradually appending to the files or 

  by updating them in random-access mode.  

 The logging approach permits such piece-wise writes and  

 does not require the whole file to be rewritten,  

 but the new data for the file will go at the end of the log. 
 

 This will not be adjacent on disk  

 to other data written to the file previously.  
 

 If the file is later read sequentially  

 from one end to the other,  

 many seeks will be required.  
 

 In comparison,  

 a more traditional file system can keep  

 the file’s data contiguous on disk  

 even under this sort of access pattern. 


