
Slide 1 of 58 embeded

Other techniques

 1. Track-aligned Extents

 2. Exploiting Disk Bandwidth for Small Files

 3. Disk Shuffling

 4. Log Approach

Slide 2 of 58 embeded

Other tehniques

1. Track-aligned Extents

Slide 3 of 58 embeded

1. Track-aligned Extents

 Based on disk-specific knowledge about disk data layout

 allocating and accessing

 related data

 on disk track boundaries

 system avoids most

 rotational latency

 and

 track crossing overheads.

 Avoiding these overheads

 can increase disk access efficiency

 by up to 50% for mid-sized requests (100–500 KB).

Slide 4 of 58 embeded

Head Switch time

 Head switch. A head switch occurs

 when a single request accesses a sequence of LBNs

 whose on-disk locations span two tracks.

 Even compared to other disk characteristics,

 head switch

 time has improved little in the past decade.

Slide 5 of 58 embeded

Zero-latency access

 With zero-latency access support, disk firmware can read the N

sectors, from the media into its buffers, in any order

 In the best case of reading exactly one track,

 the head can start reading data as soon as the seek is completed;

 no rotational latency is involved

 because all sectors on the track are needed.

Slide 6 of 58 embeded

Timing

Slide 7 of 58 embeded

Implementation

 Detecting track boundaries.

 This task is more difficult than might be expected, because of:

 1. zoned recording

 2. media defect management

 set of changes needed

 to use track boundary knowledge

 in an existing file system.

 Grouping (for block-based FS, like ext3)

 Allocation of track-aligned extents

 Very convenient for extent-based FS (like XFS, NTFS)

Slide 8 of 58 embeded

Performance improvements

 For large-file workloads,

 a version of FreeBSD’s FFS implementation

 that exploits traxtents

 reduces application run times by up to 20%

 compared to the original version.

 A video server using traxtent-based requests

 can support 56% more concurrent streams

 at the same startup latency and buffer space.

 For LFS,

 44% lower overall write cost

 for track-sized segments

 can be achieved

Slide 9 of 58 embeded

Results

Slide 10 of 58 embeded

Other techniques

2. Exploiting Disk Bandwidth

 for

Small Files

Slide 11 of 58 embeded

2. Exploiting Disk Bandwidth for Small Files

 C-FFS (Co-locating Fast File System),

 introduces 2 techniques,

 for exploiting disk bandwidth for small files and metadata

 1. embedded inodes

 2. explicit grouping

 1. embedded inodes

 inodes for most files

 are stored in the directory

with the corresponding name, (in FCB)

 removing a physical level of indirection

without sacrificing the logical level of indirection.

 2. explicit grouping

 data blocks of multiple small files named by a given directory are

 allocated adjacently and

moved to and from the disk

 as a unit in most cases.

Slide 12 of 58 embeded

Embedded inodes

F1-F5 blocks

from same file

Slide 13 of 58 embeded

Explicit grouping

 Explicit grouping

 places the data blocks of multiple files

 at adjacent disk locations

 accesses them as a single unit most of the time

 To decide which small files to co-locate,

 C-FFS exploits the inter-file relationships

 indicated by the name space.

 Specifically, C-FFS groups files

 whose inodes are embedded

 in the same directory.

 As a result,

 explicit grouping has the potential

 to improve small file performance

 by an order of magnitude

 over conventional file system implementations.

Slide 14 of 58 embeded

Performances

Slide 15 of 58 embeded

Other techniques

3. Disk Shuffling

Slide 16 of 58 embeded

03. Disk Shuffling

 Adapting disk layouts to observed, rather than predicted, access patterns can
result in faster I/O operations. In particular, a technique called disk shuffling,
which moves frequently-accessed data into the center of a disk, can
substantially reduce mean seek distances. We report here on extensions to
and (partial) validation of earlier work on this approach at the University of
Maryland.

 Starting from disk access traces obtained during normal system use of 4.2BSD-
based file systems, we established a repeatable simulation environment across a
range of workloads and disk types for comparing different shuffling algorithms.
We explored several of these, including how often to make layout changes, how
large a unit of data to shuffle, and some mechanisms to exploit sequentiality of
reference.

 Our conclusions: some of the originally identified benefits are real, but sometimes
performance is worse rather than better unless access interdependencies are
considered.

 Most of the benefit can be obtained from infrequent (weekly) shuffling. Smaller
quanta generally produce better results, at the expense of needing more working
storage.

 Overall, the benefits are small to moderate, but are likely to be much larger with
file systems that do not do such a good job of initial data placement.

Slide 17 of 58 embeded

Disk Shufling

Slide 18 of 58 embeded

Principal

 Grouping the most frequently-accessed data blocks together at the center

of the disk can reduce the average seek distance substantially. A good

way to do this is the organ pipe arrangement, formed by placing the most

frequently accessed cylinder in the middle of the disk, the next most

frequently accessed cylinders on either side of the middle cylinder, and

so on. This arrangement is provably optimal for independent disk

accesses [Wong83]. The effect of applying it to the disk shown in Figure

1a is displayed in Figure 1b.

 Moving the data around to achieve such an arrangement is known as

disk shuffling. The algorithm is sufficiently straightforward that it can be

done inside the disk controller, or inside the device driver.

 In all cases, a count is kept of the number of requests directed to each

shuffling quantum (e.g. cylinder) over a period of time, and these counts

are used to drive the rearrangement.

Slide 19 of 58 embeded

Results

Slide 20 of 58 embeded

Other techniques

 4. Log Approach

Slide 21 of 58 embeded

04. LFS

 The fundamental idea of a log-structured file system

 is to improve write performance by

 buffering a sequence of file system changes in the file cache and

 then writing all the changes to disk sequentially

 in a single disk write operation.

 The information written to disk in the write operation includes:

 file data blocks

 attributes

 index blocks

 directories

 almost all the other information used to manage the file system.

 For workloads that contain many small files,

 a log-structured file system converts

 many small synchronous random writes of traditional file systems

 into large asynchronous sequential transfers

 that can utilize nearly 100% of the raw disk bandwidth.

Slide 22 of 58 embeded

3. LFS

 whole disk = log (append only log)

 called log-structured file system

 LFS basic concept

 Collect large number of written data in the cache

 Put in the log in large sequential access

 As files are modified,

 both file data and header information

 are appended to the log

 in a sequential stream

 without seeks.

 if individual files are small

 they can be collected into large blocks

 before being written to the log.

Slide 23 of 58 embeded

3. LFS Benefits

Fast recovery

Temporal locality

Versioning

Slide 24 of 58 embeded

3. LFS difficult issues

 There are 3 difficult issues

 that

 must be resolved

 to make log-structured file systems practical.

 I. how to handle the occasional retrievals (reading)

 that will be required from the log

 II. how to manage log wrap-around;

 III. how to achieve efficient disk space utilization

Slide 25 of 58 embeded

Classical FS (adding new block)

 shows a traditional file system

 with separate map and data areas;

 a new data block is allocated and

 the map is updated in place.

new

block

Slide 26 of 58 embeded

Log DATA (adding new block)

 the data area has been made into a log:

 each new data block gets added at the end of the log,

 but map entries are still updated in place.

new

block

Slide 27 of 58 embeded

UNIX LFS

files
File info

Slide 28 of 58 embeded

LFS Segments under UNIX

 A Log-Structured File System.

 A file system is composed of segments as shown in Figure (a).

 Each segment consists of

 a summary block followed by

 data blocks and inode blocks (b).

 The segment summary contains

 checksums to validate both the segment summary and the data blocks,

 a timestamp,

 a pointer to the next segment, and

 information that describes

 each file and inode that appears in the segment (c).

 Files are described by FINFO structures

 that identify the inode number and

 version of the file (as well as each block of that file)

 located in the segment (d).

Slide 29 of 58 embeded

Wrap-around

new data

live data

Slide 30 of 58 embeded

Performance Comparisons

 LFS will outperform

 other file systems

 for writes.

 In looking for weaknesses of LFS approach,

 it thus makes most sense

 to look at reads that miss in the file cache.

 For small files,

 a log-structured file system

 will have read performance

 at least as good as today’s file systems

 In the worst case, one seek will be required for the file map and one for
the file data.

 With a little cleverness in the log management,

 it should be possible to write the file map

 close to the file data

 so they can both be retrieved with a single seek.

 This would result in 2x better performance than current file systems.

Slide 31 of 58 embeded

Large file reading (file written at once)

 For large-file reads, there are 2 cases to consider.

 1. The simplest case is files that are written all-at-once.

 These files will be contiguous in the log,

 which allows them to be read

 at least as efficiently as today’s best file systems

 (particularly if the file map is written next to the data in the log).

 Random-access reads to such a file will require seeks,

 but no more in a log-structured file system

 than in a traditional file system.

Slide 32 of 58 embeded

Large access (file written piece-wise)

 2. The second case for large files consists of those that are written

piece-wise, either

 by gradually appending to the files or

 by updating them in random-access mode.

 The logging approach permits such piece-wise writes and

 does not require the whole file to be rewritten,

 but the new data for the file will go at the end of the log.

 This will not be adjacent on disk

 to other data written to the file previously.

 If the file is later read sequentially

 from one end to the other,

 many seeks will be required.

 In comparison,

 a more traditional file system can keep

 the file’s data contiguous on disk

 even under this sort of access pattern.

