
Slide 1 of 11 JFS

JFS (64bit FS by IBM)

 Journaled File System (JFS) provides

 a log-based,

 byte-level file system that was developed for transaction-oriented,

high performance systems.

 Scalable and robust, its advantage over non-journaled file

systems is its quick restart capability:

 JFS can restore FS to a consistent state in a matter of seconds or

minutes.

 While tailored primarily for the high throughput and reliability

requirements of servers

 (from single processor systems to advanced multi-processor and

clustered systems),

 JFS is also applicable to client configurations where performance

and reliability are desired

Slide 2 of 11 JFS

Journaling under JFS

 JFS only logs operations on meta-data,

 It does not log file data or recover this data to consistent state.

 JFS implements:

 synchronous write to the log

 group commit

which combines multiple synchronous write operations

 into a single write

 asynchronous write to the log

Slide 3 of 11 JFS

Extent-based addressing structures

 JFS uses

 extent-based addressing structures,

 along with aggressive block allocation policies,

 to produce compact, efficient, and scalable structures for mapping

logical offsets within files to physical addresses on disk

 An extent is a sequence of contiguous blocks allocated to a file

as a unit and is described by a triple, consisting of

 <logical offset, length, physical>

 The addressing structure is a B+ tree of extents

 populated with extent descriptors (the triples above),

 rooted in the inode and

 keyed by logical offset within the file

Slide 4 of 11 JFS

block sizes

 JFS supports block sizes of

 512, 1024, 2048, and 4096 bytes on a per-file system basis,

 allowing users to optimize space utilization based on their application

environment.

 Smaller block sizes reduce the amount of internal fragmentation

within files and directories and are more space efficient.

 However, small blocks can increase path length since

 block allocation activities may occur

 more often than if a large block size were used.

 The default block size is 4096 bytes

 since performance,

 rather than space utilization,

 is generally the primary consideration for server systems.

Slide 5 of 11 JFS

Dynamic disk inode allocation

 JFS dynamically allocates space for disk inodes as required,

 freeing the space

 when it is no longer required.

 This support avoids

 the traditional approach of reserving a fixed amount of space

 for disk inodes

 at the file system creation time,

 thus eliminating the need for users to estimate the maximum

number of files and directories that a file system will contain.

 Additionally, this support decouples disk inodes from fixed disk

locations.

Slide 6 of 11 JFS

Directory organization

 2 different directory organizations are provided.

 The first organization is used for small directories and stores the

directory contents within the directory's inode.

 This eliminates the need for separate directory block I/O as well as the

need to allocate separate storage.

 Up to 8 entries may be stored in-line within the inode, excluding the

self(.) and parent(..) directory entries, which are stored in separate areas

of the inode.

 The second organization is used for larger directories and

represents each directory as a B+tree keyed on name.

 It provides faster directory lookup, insertion, and deletion

capabilities when compared to traditional unsorted directory

organizations.

Slide 7 of 11 JFS

Sparse and dense files

 JFS supports both sparse and dense files, on a per-file system basis

 Sparse files allow data to be written to random locations within a file

without instantiating previously unwritten intervening file blocks.

 The file size reported is the highest byte that has been written to, but

the actual allocation of any given block in the file does not occur until

a write operation is performed on that block.

 For example, suppose a new file is created in a file system designated

for sparse files. An application writes a block of data to block 100 in the file.

 JFS will report the size of this file as 100 blocks, although only 1 block of

disk space has been allocated to it. If the application next reads block

50 of the file, JFS will return a block of zero-filled bytes. Suppose the

application then writes a block of data to block 50 of the file.

 JFS will still report the size of this file as 100 blocks, and now 2 blocks of

disk space have been allocated to it.

 Sparse files are of interest to applications that require a large logical

space but only use a (small) subset of this space.

Slide 8 of 11 JFS

Sparse and dense files

 For dense files,

 disk resources are allocated to cover the file size.

 In the above example,

 the first write (a block of data to block 100 in the file)

 would cause 100 blocks of disk space to be allocated to the file.

 A read operation on any block that has been implicitly written

 to will return a block of zero-filled bytes,

 just as in the case of the sparse file.

Slide 9 of 11 JFS

Internal JFS (potential) limits

 JFS is a full 64-bit file system. All of the appropriate file system
structure fields are 64-bits in size.

 This allows JFS to support both large files and partitions.

 File system size

 The minimum file system size supported by JFS is 16 Mbytes.

 The maximum file system size is a function of the file system block
size and the maximum number of blocks supported by the file
system meta-data structures.

 JFS will support a maximum FS size of

 512 terabytes (with block size512 bytes)

 to

 4 petabytes (with block size 4 Kbytes).

Slide 10 of 11 JFS

Internal JFS (potential) limits

 File size

 The maximum file size is the largest file size that virtual file system

framework supports.

 For example, if the frame work only supports 32-bits, then this limits the

file size.

 Removable media

 JFS will not support diskettes as an underlying file system device.

Slide 11 of 11 JFS

Ext3 v JFS

test2: ext3 v JFS

0

50

100

150

200

250

300

350

read write

K
B

/s

ext2

ext3-wb

ext3-o

ext3-j

jfs

jfs-na

