
Slide 1 of 11 JFS

JFS (64bit FS by IBM)

 Journaled File System (JFS) provides

 a log-based,

 byte-level file system that was developed for transaction-oriented,

high performance systems.

 Scalable and robust, its advantage over non-journaled file

systems is its quick restart capability:

 JFS can restore FS to a consistent state in a matter of seconds or

minutes.

 While tailored primarily for the high throughput and reliability

requirements of servers

 (from single processor systems to advanced multi-processor and

clustered systems),

 JFS is also applicable to client configurations where performance

and reliability are desired

Slide 2 of 11 JFS

Journaling under JFS

 JFS only logs operations on meta-data,

 It does not log file data or recover this data to consistent state.

 JFS implements:

 synchronous write to the log

 group commit

which combines multiple synchronous write operations

 into a single write

 asynchronous write to the log

Slide 3 of 11 JFS

Extent-based addressing structures

 JFS uses

 extent-based addressing structures,

 along with aggressive block allocation policies,

 to produce compact, efficient, and scalable structures for mapping

logical offsets within files to physical addresses on disk

 An extent is a sequence of contiguous blocks allocated to a file

as a unit and is described by a triple, consisting of

 <logical offset, length, physical>

 The addressing structure is a B+ tree of extents

 populated with extent descriptors (the triples above),

 rooted in the inode and

 keyed by logical offset within the file

Slide 4 of 11 JFS

block sizes

 JFS supports block sizes of

 512, 1024, 2048, and 4096 bytes on a per-file system basis,

 allowing users to optimize space utilization based on their application

environment.

 Smaller block sizes reduce the amount of internal fragmentation

within files and directories and are more space efficient.

 However, small blocks can increase path length since

 block allocation activities may occur

 more often than if a large block size were used.

 The default block size is 4096 bytes

 since performance,

 rather than space utilization,

 is generally the primary consideration for server systems.

Slide 5 of 11 JFS

Dynamic disk inode allocation

 JFS dynamically allocates space for disk inodes as required,

 freeing the space

 when it is no longer required.

 This support avoids

 the traditional approach of reserving a fixed amount of space

 for disk inodes

 at the file system creation time,

 thus eliminating the need for users to estimate the maximum

number of files and directories that a file system will contain.

 Additionally, this support decouples disk inodes from fixed disk

locations.

Slide 6 of 11 JFS

Directory organization

 2 different directory organizations are provided.

 The first organization is used for small directories and stores the

directory contents within the directory's inode.

 This eliminates the need for separate directory block I/O as well as the

need to allocate separate storage.

 Up to 8 entries may be stored in-line within the inode, excluding the

self(.) and parent(..) directory entries, which are stored in separate areas

of the inode.

 The second organization is used for larger directories and

represents each directory as a B+tree keyed on name.

 It provides faster directory lookup, insertion, and deletion

capabilities when compared to traditional unsorted directory

organizations.

Slide 7 of 11 JFS

Sparse and dense files

 JFS supports both sparse and dense files, on a per-file system basis

 Sparse files allow data to be written to random locations within a file

without instantiating previously unwritten intervening file blocks.

 The file size reported is the highest byte that has been written to, but

the actual allocation of any given block in the file does not occur until

a write operation is performed on that block.

 For example, suppose a new file is created in a file system designated

for sparse files. An application writes a block of data to block 100 in the file.

 JFS will report the size of this file as 100 blocks, although only 1 block of

disk space has been allocated to it. If the application next reads block

50 of the file, JFS will return a block of zero-filled bytes. Suppose the

application then writes a block of data to block 50 of the file.

 JFS will still report the size of this file as 100 blocks, and now 2 blocks of

disk space have been allocated to it.

 Sparse files are of interest to applications that require a large logical

space but only use a (small) subset of this space.

Slide 8 of 11 JFS

Sparse and dense files

 For dense files,

 disk resources are allocated to cover the file size.

 In the above example,

 the first write (a block of data to block 100 in the file)

 would cause 100 blocks of disk space to be allocated to the file.

 A read operation on any block that has been implicitly written

 to will return a block of zero-filled bytes,

 just as in the case of the sparse file.

Slide 9 of 11 JFS

Internal JFS (potential) limits

 JFS is a full 64-bit file system. All of the appropriate file system
structure fields are 64-bits in size.

 This allows JFS to support both large files and partitions.

 File system size

 The minimum file system size supported by JFS is 16 Mbytes.

 The maximum file system size is a function of the file system block
size and the maximum number of blocks supported by the file
system meta-data structures.

 JFS will support a maximum FS size of

 512 terabytes (with block size512 bytes)

 to

 4 petabytes (with block size 4 Kbytes).

Slide 10 of 11 JFS

Internal JFS (potential) limits

 File size

 The maximum file size is the largest file size that virtual file system

framework supports.

 For example, if the frame work only supports 32-bits, then this limits the

file size.

 Removable media

 JFS will not support diskettes as an underlying file system device.

Slide 11 of 11 JFS

Ext3 v JFS

test2: ext3 v JFS

0

50

100

150

200

250

300

350

read write

K
B

/s

ext2

ext3-wb

ext3-o

ext3-j

jfs

jfs-na

