
Slide 1 of 17 ReiserFS

ReiserFS

Reiser 3.6

Reiser 4

Reiser 5

????

Slide 2 of 17 ReiserFS

Reiser FS

 ReiserFS, the first of several journalling filesystems we're going
to be investigating.

 ReiserFS 3.6.x (the version included as part of Linux 2.4) is
designed and developed by Hans Reiser and his team of
developers at Namesys.

 Hans and his team share the philosophy that

 the best filesystems are those that help create

 a single shared environment,

 or namespace,

 where applications can interact more directly, efficiently and
powerfully.

 To do this, a filesystem should meet the performance and feature
needs of its users.

 That way, users can continue using the filesystem directly

 rather than building special-purpose layers

 that run on top of the filesystem,

 such as databases and the like.

Slide 3 of 17 ReiserFS

Names and Objects

 A name is a means of selecting an object. An object is anything that acts as

though it is a single unified entity. What is an object is context dependent. For

instance, if you tell an object to delete itself, many distinctly named entities

(that are distinct objects in other ways such as reading) might well disappear

as though they are a single object in response to the delete request.

 A namespace is a mapping of names to objects. Filesystems, databases,

search engines, environment variable names within shells, are all examples of

namespaces. The early papers using the term tended to seek to convey that

namespaces have commonality in their structure, are not fundamentally

different, should be based on common design principles, and should be unified.

 Namespaces will never be unified, but the closer we can come to it, the more

expressive power the OS will have. Reiser4 seeks to create a storage layer

effective for such an eventually unified namespace, and gives it a semantic

layer with some minor advantages over the state of the art. Later versions will

add more and more expressive semantics to the storage layer.

Slide 4 of 17 ReiserFS

Names and Objects

 Finding objects is layered:

 1. semantic layer takes names and converts them into keys (we call this

"resolving" the name).

 2. storage layer (which contains the tree traversing code) takes keys and finds

the bytes that store the parts of the object.

 Keys are the fundamental name used by the Reiser4 tree. They are the

name that the storage layer at the bottom of it all understands. They can be

used to find anything in the tree, not just whole objects, but parts of objects as

well.

 Everything in the tree has exactly one key. Duplicate keys are allowed, but

their use usually means that all duplicates must be examined to see if they

really contain what is sought, and so duplicates are usually rare if high

performance is desired. Allowing duplicates can allow keys to be more

compact in some circumstances (e.g. hashed directory entries).

 An objectid cannot be used for finding an object, only keys can. Objectids are

used to compose keys so as to ensure that keys are unique.

Slide 5 of 17 ReiserFS

Small file performance

 Namesys has decided to focus on one aspect of the filesystem,
at least initially -- small file performance.

 In general,

 filesystems like ext2 and ufs don't do very well in this area,

 often forcing developers to turn to databases or special
organizational hacks to get the kind of performance they need.

 special-purpose APIs, which isn't a good thing.

 Well, that's the theory. But how good is ReiserFS' small file
performance in practice? Amazingly good.

 In fact,

 ReiserFS is around 8 to15 times faster than ext2

 when handling files smaller than one k in size!

 Even better,

 these performance improvements don't come

 at the expense of performance for other file types.

 In general, ReiserFS outperforms ext2 in nearly every area, but
really shines when it comes to handling small files

Slide 6 of 17 ReiserFS

ReiserFS technology

 So how does ReiserFS go about offering such excellent small file
performance?

 ReiserFS uses a specially optimized b* balanced tree

 (one per filesystem)

 to organize all filesystem data.

 This in itself offers a nice performance boost, as well as easing
artificial restrictions on filesystem layouts. It's now possible to have a
directory that contains 100,000 other directories, for example.

 Another benefit of using a b*tree is that ReiserFS,

 like most other next-generation filesystems,

 dynamically allocates inodes as needed

 rather than creating a fixed set of inodes at filesystem creation time.

 This helps the filesystem to be more flexible

 to the various storage requirements

 that may be thrown at it,

 while at the same time allowing for some additional space-efficiency.

Slide 7 of 17 ReiserFS

Basic Tree Concepts: Trees, Nodes, and Items

 One way of organizing information is to put it into trees.

 When we organize information in a computer, we typically sort it into

piles (nodes we call them), and there is a name (a pointer) for each pile

that the computer will be able to use to find the pile.

 Figure 1. One Example Of A Tree.

 Some of the nodes can contain pointers, and we can go looking

through the nodes to find those pointers to (usually other) nodes.

 We are particularly interested in how to organize so that we can find

things when we search for them. A tree is an organization structure that

has some useful properties for that purpose.

Slide 8 of 17 ReiserFS

Fine Points of the Definition

 Figure 2. The simplest tree.

 Figure 3. A trivial, linear tree.

 It is interesting to argue over whether finite should be a part of the

definition of trees. There are many ways of defining trees, and which is

the best definition depends on what your purpose is. Donald Knuth (a

well known author of algorithm textbooks) supplies several definitions

of tree. As his primary definition of tree he even supplies one which has

no pointers/edges/lines in the definition, just sets of nodes.

Slide 9 of 17 ReiserFS

Ordering The Tree Aids Searching Through It

 Keys

 We assign everything stored in the tree a key.

 We find things by their keys. Use of keys gives us additional flexibility

in how we sort things, and if the keys are small, it gives us a compact

means of specifying enough to find the thing. It also limits what

information we can use for finding things.

 This limit restricts its usefulness, and so we have a storage layer,

which finds things by keys, and a semantic layer, which has a rich

naming system.

 The storage layer chooses keys for things solely to organize storage in

a way that will improve performance, and the semantic layer

understands names that have meaning to users. As you read, you

might want to think about whether this is a useful separation that allows

freedom in adding improvements that aid performance in the storage

layer, while escaping paying a price for the side effects of those

improvements on the flexible naming objectives of the semantic layer.

Slide 10 of 17 ReiserFS

An example of a Reiser4 tree

 Figure 5. This Reiser4 tree is a 4 level, balanced tree with a fanout of 3.

 In practice Reiser4 fanout is much higher and varies from node to node,

but a 4 level tree diagram with 16 million leaf nodes won't fit easily onto

my monitor so I drew something smaller....;-)

Slide 11 of 17 ReiserFS

unbalanced tree

 Figure 6. This is an unbalanced tree

Slide 12 of 17 ReiserFS

Figure 7. Three 4 level, height balanced trees with fanouts

n = 1, 2, and 3.

 The first graph is a four level tree with fanout n = 1. It has just four nodes,

starts with the (red) root node, traverses the (burgundy) internal and (blue) twig

nodes, and ends with the (green) leaf node which contains the data. The

second tree, with 4 levels and fanout n = 2, starts with a root node, traverses 2

internal nodes, each of which points to two twig nodes (for a total of four twig

nodes), and each of these points to 2 leaf nodes for a total of 8 leaf nodes.

Lastly, a 4 level, fanout n = 3 tree is shown which has 1 root node, 3 internal

nodes, 9 twig nodes, and 27 leaf nodes.

Slide 13 of 17 ReiserFS

What Are B+Trees, and Why Are They Better than

B-Trees

 It is possible to store not just pointers and keys in internal nodes, but

also to store the objects those keys correspond to in the internal nodes.

This is what the original B-tree algorithms did.

 Then B+trees were invented in which only pointers and keys are stored

in internal nodes, and all of the objects are stored at the leaf level.

Slide 14 of 17 ReiserFS

Dancing Trees Are Faster Than Balanced Trees

Slide 15 of 17 ReiserFS

ReiserFS technology

 ReiserFS also has a host of features aimed specifically at

improving small file performance.

 Unlike ext2,

 ReiserFS doesn't allocate storage space in fixed 1K or 4K blocks.

 Instead, it can allocate the exact size it needs.

 ReiserFS also includes some special optimizations centered

around tails,

 a name for files and end portions of files

 that are smaller than a filesystem block.

Slide 16 of 17 ReiserFS

ReiserFS technology

 In order to increase performance,

 ReiserFS is able

 to store files inside the b*tree leaf nodes themselves,

 rather than storing the data somewhere else on the disk

 and pointing to it.

 This does two things.

 First, it dramatically increases small file performance.

 Since the file data and the stat_data (inode) information

 are stored right next to each other,

 they can normally be read with a single disk IO operation.

 Second,

 ReiserFS is able to pack the tails together,

 saving a lot of space.

 In fact, a ReiserFS filesystem with tail packing enabled (the default)

 can store six percent more data than the equivalent ext2 filesystem.

Slide 17 of 17 ReiserFS

Ext3 v Reiser

