
Xen and the Art of
Virtualization

Introduction
 Challenges to build virtual machines

 Performance isolation
 Scheduling priority
 Memory demand
 Network traffic
 Disk accesses

 Support for various OS platforms
 Small performance overhead

Xen
 Multiplexes resources at the granularity of an

entire OS
 As opposed to process-level multiplexing
 Price: higher overhead

 Target: 100 virtual OSes per machine

Xen: Approach and Overview
 Conventional approach

 Full virtualization
 Cannot access the hardware
 Problematic for certain privileged instructions (e.g.,

traps)
 No real-time guarantees

Xen: Approach and Overview
 Xen: paravirtualization

 Provides some exposures to the underlying HW
 Better performance
 Need modifications to the OS
 No modifications to applications

Memory Management
 Depending on the hardware supports

 Software managed TLB
 Associate address space IDs with TLB tags
 Allow coexistence of OSes
 Avoid TLB flushing across OS boundaries

Memory Management
 X86 does not have software managed TLB

 Xen exists at the top 64MB of every address
space

 Avoid TLB flushing when an guest OS enter/exist
Xen

 Each OS can only map to memory it owns
 Writes are validated by Xen

CPU
 X86 supports 4 levels of privileges

 0 for OS, and 3 for applications
 Xen downgrades the privilege of OSes
 System-call and page-fault handlers registered to

Xen
 “fast handlers” for most exceptions, Xen isn’t

involved

Device I/O
 Xen exposes a set of simple device

abstractions

The Cost of Porting an OS to Xen
 Privileged instructions
 Page table access
 Network driver
 Block device driver
 <2% of code-base

Control Management
 Separation of policy and mechanism
 Domain0 hosts the application-level

management software
 Creation and deletion

of virtual network

interfaces and block

devices

Control Transfer: Hypercalls and
Events
 Hypercall: synchronous calls from a domain

to Xen
 Analogous to system calls

 Events: asynchronous notifications from Xen
to domains
 Replace device interrupts

Data Transfer: I/O Rings
 Zero-copy semantics

CPU Scheduling
 Borrowed virtual time scheduling

 Allows temporary violations of fair sharing to
favor recently-woken domains

 Goal: reduce wake-up latency

Time and Timers
 Xen provides each guest OS with

 Real time (since machine boot)
 Virtual time (time spent for execution)
 Wall-clock time

 Each guest OS can program a pair of alarm
timers
 Real time
 Virtual time

Virtual Address Translation
 No shadow pages (VMWare)
 Xen provides constrained but direct MMU

updates
 All guest OSes have read-only accesses to

page tables
 Updates are batched into a single hypercall

Physical Memory
 Reserved at domain creation times
 Memory statically partitioned among domains

Network
 Virtual firewall-router attached to all domains
 Round-robin packet scheduler
 To send a packet, enqueue a buffer descriptor

into the transmit rang
 Use scatter-gather DMA (no packet copying)

 A domain needs to exchange page frame to avoid
copying

 Page-aligned buffering

Disk
 Only Domain0 has direct access to disks
 Other domains need to use virtual block

devices
 Use the I/O ring
 Reorder requests prior to enqueuing them on the

ring
 If permitted, Xen will also reorder requests to

improve performance
 Use DMA (zero copy)

Evaluation
 Dell 2650 dual processor
 2.4 GHz Xeon server
 2GB RAM
 3 Gb Ethernet NIC
 1 Hitachi DK32eJ 146 GB 10k RPM SCSI

disk
 Linux 2.4.21 (native)

Relative Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Linux Xen VMWare UML

SPEC INT2000 score

CPU Intensive

Little I/O and OS interaction

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Linux Xen VMWare UML

SPEC WEB99

180Mb/s TCP traffic

Disk read-write on 2GB dataset

Concurrent Virtual Machines

Multiple Apache
processes in Linux

vs.

One Apache process in
each guest OS

Performance Isolation
 4 Domains
 2 running benchmarks
 1 running dd
 1 running a fork bomb in the background
 2 antisocial domains contributed only 4%

performance degradation

Scalability

