
Slide 1 of 15 XFS

XFS (64 bit FS by SGI)

 XFS was originally developed by Silicon Graphics, Inc.

 back in the early 90s.

 At that time,

 SGI found that their existing filesystem (EFS)

 was quickly becoming unsuitable

 for tackling the extreme computing challenges of the day.

 Addressing this problem,

 SGI decided to design a completely new high-performance 64-bit

filesystem

 rather than attempting to tweak EFS

 to do something that it was never designed to do.

 Thus, XFS was born, and was made available to the computing

public with the release of IRIX 5.3 in 1994.

Slide 2 of 15 XFS

XFS (64 bit FS by SGI)

 To this day,

 it continues to be used as the underlying filesystem

 for all of SGI's IRIX-based products,

 from workstations to supercomputers.

 And now, XFS is also available for Linux.

 The arrival of XFS for Linux is exciting,

 primarily because

 it provides the Linux community

 with a robust, refined, and very feature-rich filesystem

 that's capable of scaling to meet the toughest storage challenges.

Slide 3 of 15 XFS

XFS design

 In the "Scalability in the XFS Filesystem" paper

 featured at USENIX '96,

 the SGI engineers explain that

 XFS was designed with

 a single main idea: "think big"

 Indeed, XFS has been designed to

 eliminate the limitations

 found in traditional filesystems.

Slide 4 of 15 XFS

Introducing allocation groups

 When an XFS filesystem is created,

 the underlying block device is split into

 8 or more equally-sized linear regions.

 You can think of them as "chunks" or "linear ranges",

 but in XFS terminology

 each region is called an "allocation group".

 Allocation groups are unique in that

 each allocation group manages

 its own inodes and

 free space,

 in effect turning them into a kind of sub-filesystem

 that exists transparently within the XFS filesystem proper.

Slide 5 of 15 XFS

Allocation groups and scalability

 So, why exactly does XFS have allocation groups?

 Primarily, XFS uses allocation groups

 so that it can efficiently handle parallel IO.

 Because each allocation group is effectively its own independent

entity,

 the kernel can interact with multiple allocation groups

simultaneously.

 Without allocation groups,

 the XFS filesystem code could become a performance bottleneck,

 forcing IO-hungry processes to "get in line"

 to make inode modifications

 or performing other kinds of metadata-intensive operations.

Slide 6 of 15 XFS

Allocation groups and scalability

 Thanks to allocation groups,

 the XFS code will allow multiple threads and processes

 to continue to run in parallel,

 even if many of them are performing non-trivial IO

 on the same filesystem.

 So, match XFS with some high-end hardware and

 you'll get high-end results

 rather than a filesystem bottleneck.

 Allocation groups also help to optimize

 parallel IO performance on multiprocessor systems,

 because more than one metadata update

 can be "in transit" at the same time.

Slide 7 of 15 XFS

B+ trees everywhere (for free space)
 Internally,

 allocation groups use efficient B+ trees

 to keep track of important data such as

 ranges of free space (also called "extents") ,

 as well as inodes.

 The ability to find regions of free space quickly
 is critical for maximizing write performance,

 which is something that XFS is very good at.

 In fact, each allocation group has two B+ trees

 used to keep track of free space;

 1. one B+ tree (sizes)

 stores:
 the extents of free space

 ordered by size,

 and

 2. other B+ tree (beginning addresses)

 has
 the regions ordered by

 their starting physical location on the block device.

Slide 8 of 15 XFS

B+ trees everywhere (for inodes)

 XFS is also very efficient

 when it comes to the management of inodes

 Each allocation group allocates inodes as needed,

 in groups of 64

 An allocation group keeps track of its own inodes

 by using a B+ tree

 that records where each particular inode number

 can be found on disk.

 You'll find that

 XFS uses B+ trees as much as possible,

 due to their excellent performance and

 tremendous scalability.

Slide 9 of 15 XFS

Journaling

 Like ReiserFS,

 XFS only journals metadata, and

 does not take any special precautions to ensure that the data

makes it to disk before metadata is written.

 This means that with XFS (just like with ReiserFS),

 it's possible for recently modified data to be lost

 in the event of an unexpected reboot.

 However, a couple of properties of XFS' journal

 make this issue less common than it is with ReiserFS.

Slide 10 of 15 XFS

Journaling

 With ReiserFS,

 an unexpected reboot can result

 in recently modified files

 containing portions of previously deleted files.

 Besides the obvious data loss, this could also theoretically

pose a security threat.

 In contrast,

 XFS ensures that

 any unwritten data blocks are zeroed on reboot,

 when XFS journal is replayed.

 Thus, missing blocks are filled with null bytes,

 eliminating the security hole –

 a much better approach.

Slide 11 of 15 XFS

Journaling

 Now, what about the data loss issue itself?

 In general,

 this problem is minimized with XFS

 due to the fact that

 XFS generally, writes pending metadata updates to disk

 much more frequently than ReiserFS does,

 especially during periods high disk activity.

 Thus, in the event of a lockup-failure,

 you will generally lose

 fewer of your recent metadata modifications

 than you would with ReiserFS.

 Of course,

 this does not directly address

 the problem of not writing data blocks in time,

 but writing metadata more frequently

 does encourage data to be written more frequently as well.

Slide 12 of 15 XFS

Delayed allocation

 delayed allocation, a feature unique to XFS.

 the term allocation refers

 to the process of finding regions of free space

 to use for storing new data.

 XFS handles allocation by breaking it into a two-step process.

 First,

 when XFS receives new data to be written,

 it records the pending transaction in RAM and

 simply reserves an appropriate amount of space on the underlying filesystem.

 However, while XFS reserves space for the new data,

 it doesn't decide

 what filesystem blocks will be used to store the data,

 at least not yet.

 XFS procrastinates, (odugovlačiti)

 delaying this decision

 to the last possible moment,

 right before this data is actually written to disk

Slide 13 of 15 XFS

Delayed allocation

 By delaying allocation,

 XFS gains many opportunities

 to optimize write performance.

 When it comes time to write the data to disk,

 XFS can now allocate free space intelligently,

 in a way that optimizes filesystem performance.

 In particular,

 if a bunch of new data is being appended to a single file,

 XFS can allocate a single, contiguous region on disk

 to store this data.

 If XFS hadn't delayed its allocation decision,

 it may have unknowingly written the data

 into multiple non-contiguous chunks,

 reducing write performance.

Slide 14 of 15 XFS

ext3 v XFS: small file performance

test1: ext3 v XFS

0

2

4

6

8

10

read w rite

M
B

/s

ext2

ext3-wb

ext3-o

ext3-j

xfs

xfs-best

Slide 15 of 15 XFS

ext3 v XFS: ultra small file performance

test2: ext3 v XFS

0

50

100

150

200

250

300

350

read write

K
B

/s

ext2

ext3-wb

ext3-o

ext3-j

xfs

xfs-best

