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Hard Disk Geometry and Low-Level Data 

Structures 
 leading-edge hard disks now pack a whopping 20 GB of storage per 

platter in the same amount of space. Pretty amazing. 

 

 Of course, this trend is only going to continue, with new drives 
having more and more data in the same space. In order to use all 
this real estate to best advantage, special methods have evolved for 
dividing the disk up into usable pieces.  

 The goals, as usual, are two-fold: increasing capacity and 
increasing performance.  

 

 This section takes a detailed look at how information is  

 encoded,  

 stored, retrieved  

 and managed on a modern hard disk.  

 

 Many of the descriptions in this section in fact form the basis for 
how data is stored on other media as well. 
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Hard Disk Data Encoding and Decoding 

 Digital information is a stream of ones and zeros.  

 

 Hard disks store information in the form of magnetic pulses.  

 

 In order for the PC's data to be stored on the hard disk, therefore, it 

must be converted to magnetic information.  

 When it is read from the disk, it must be converted back to digital 

information.  

 This work is done by the integrated controller built into the hard 

drive, in combination with sense and amplification circuits that are 

used to interpret the weak signals read from the platters 

themselves. 
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Hard Disk Data Encoding and Decoding 

 Magnetic information on the disk consists of a stream of (very, very 

small) magnetic fields.  

 

 As you know, a magnet has two poles, north and south, and magnetic 

energy (called flux) flows from the north pole to the south pole.  

 

 Information is stored on the hard disk by encoding information into a 

series of magnetic fields.  

 

 This is done by placing the magnetic fields in one of two polarities:  

 either so  

 the north pole arrives before the south pole as the disk spins (N-S),  

 or  

 so the south pole arrives before the north (S-N).  
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Hard Disk Data Encoding and Decoding 

 Although it is conceptually simple  

 to match "0 and 1" digital information  

 to "N-S and S-N" magnetic fields  

 

 the reality is much more complex:  

 a 1-to-1 correspondence is not possible  

 and special techniques must be employed  

 to ensure that the data is written and read correctly.  

 

 This section discusses the technical issues involved in encoding 

and decoding hard disk data. 
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Technical Requirements for Encoding and 

Decoding  
 You might think that since there are two magnetic polarities,  

 N-S and S-N,  

 they could be used nicely to represent a  

 "one" and a "zero" respectively, 

  to allow easy encoding of digital information.  

 

 There are 3 key reasons why  

 it is not possible to do this simple 1-to-1 encoding:  

 1. Fields vs. Reversals (suprotnost, promena) 

 

 2. Synchronization 

 

 3. Field Separation 
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Technical Requirements for Encoding and 

Decoding  
 1. Fields vs. Reversals: Read/write heads are designed not to 

measure the actual polarity of the magnetic fields, but rather flux 

reversals, which occur when the head moves from an area that has 

north-south polarity to one that has south-north polarity, or vice-

versa.  

 The reason the heads are designed based on flux reversals instead 

of absolute magnetic field, is that reversals are easier to measure. 

When the hard disk head passes from over a reversal a small 

voltage spike is produced that can be picked up by the detection 

circuitry.  

 As disk density increases, the strength of each individual magnetic 

field continues to decrease, which makes detection sensitivity 

critical. What this all means is that the encoding of data must be 

done based on flux reversals, and not the contents of the individual 

fields. 
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Technical Requirements for Encoding and 

Decoding  
 2. Synchronization: Another consideration in the encoding of data 

is the necessity of using some sort of method of indicating where 

one bit ends and another begins. 

 

  Even if we could use one polarity to represent a "one" and another 

to represent a "zero", what would happen if we needed to encode 

on the disk a stream of 1,000 consecutive zeros? It would be very 

difficult to tell where, say, bit 787 ended and bit 788 began.  

 

 Imagine driving down a highway with no odometer or highway 

markings and being asked to stop exactly at mile #787 on the 

highway. It would be pretty hard to do, even if you knew where you 

started from and your exact speed. 
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Technical Requirements for Encoding and 

Decoding  
 3. Field Separation:  

 Although we can conceptually think of putting 1000 tiny N-S pole 

magnets in a row one after the other, in reality magnetic fields don't 

work this way.  

 

 They are additive.  

 Aligning 1000 small magnetic fields near each other would create 

one large magnetic field, 1000 times the size and strength of the 

individual components.  
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Technical Requirements for Encoding and Decoding  

 Therefore, in order to encode data on the hard disk so that we'll be able 

to read it back reliably, we need to take the issues above into account.  

 

 We must encode using flux reversals, not absolute fields. We must 

keep the number of consecutive fields of same polarity to a minimum.  

 

 And to keep track of which bit is where, some sort of clock 

synchronization must be added to the encoding sequence.  
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Technical Requirements for Encoding and 

Decoding 
  Idealized depiction of the way hard disk data is written and then read. 

The top waveform shows how patterns are written to the disk. In the 

middle, a representation is shown of the way the media on the disk is 

magnetized into domains of opposite direction based on the polarity of 

the write current. The waveform on the bottom shows how the flux 

transitions on the disk translate into positive and negative voltage 

pulses when the disk is read. Note that the pattern above is made up 

and doesn't follow any particular pattern or encoding method.  
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Frequency Modulation (FM) 

 The first common encoding system for recording digital data on 
magnetic media was frequency modulation, of course abbreviated 
FM.  

 This is a simple scheme, where:  

 a 1 is recorded as two consecutive flux reversals    1->RR 

 a 0 is recorded as a flux reversal followed by no flux reversal  0->RN 

 

 This can also be thought of as follows: a flux reversal is made at the 
start of each bit to represent the clock, and then an additional 
reversal is added in the middle of each bit for a one, while the 
additional reversal is omitted for a zero. 

 

 This table shows the encoding pattern for FM (where I have 
designated "R" to represent a flux reversal and "N" to represent no 
flux reversal).  

 The average number of flux reversals per bit on a random bit stream 
pattern is 1.5. The best case (all zeroes) would be 1, the worst case 
(all ones) would be 2: 
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Frequency Modulation (FM) 

 

 

 

 

 

 

 

 

 The name "frequency modulation" comes from the fact that the number of 

reversals is doubled for ones compared to that for zeros. This can be seen 

in the patterns that are created if you look at the encoding pattern of a 

stream of ones or zeros.  

 A byte of all 0 would be encoded as "RNRNRNRNRNRNRNRN", while  

 a byte of all 1 would be "RRRRRRRRRRRRRRRR".  

 As you can see, the ones have double the frequency of reversals compared 

to the zeros; hence frequency modulation (meaning, changing frequency 

based on data value).  

Bit Pattern Encoding Pattern 
Flux Reversals 

Per Bit 
Bit Pattern Commonality 

In Random Bit Stream 

0 RN 1 50% 

1 RR 2 50% 

Weighted Average 1.5 100% 

 

1x0,5 + 2*0.5=1.5 
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FM 

 FM encoding write waveform for the byte "10001111". 

 Each bit cell is depicted as a blue rectangle with a pink line 

representing the position where a reversal is placed, if necessary, in 

the middle of the cell  
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FM 

 The problem with FM is that it is very wasteful: each bit requires 

2 flux reversal positions, with a flux reversal being added for 

clocking every bit.  

 

 Compared to more advanced encoding methods that try to reduce 

the number of clocking reversals, FM requires double (or more) the 

number of reversals for the same amount of data. This method was 

used on the earliest floppy disk drives, the immediate ancestors of 

those used in PCs. If you remember using "single density" floppy 

disks in the late 1970s or early 1980s, that designation commonly 

refers to magnetic storage using FM encoding.  

 

 FM was actually made obsolete by MFM before the IBM PC was 

introduced, but it provides the basis for understanding MFM. 

 

http://www.pcguide.com/ref/hdd/geom/dataMFM-c.html
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Modified Frequency Modulation (MFM) 

 A refinement of the FM encoding method is modified frequency 

modulation, or MFM. MFM improves on FM by reducing the number 

of flux reversals inserted just for the clock.  

 

 Instead of inserting a clock reversal at the start of every bit, one is 

inserted only between consecutive zeros.  

 

 When a 1 is involved there is already a reversal (in the middle of the 

bit) so additional clocking reversals are not needed.  

 

 When a zero is preceded by a 1, we similarly know there was 

recently a reversal and another is not needed.  

 

 Only long strings of zeros have to be "broken up" by adding clocking 

reversals. 
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MFM 

 This table shows the encoding pattern for MFM (where I have 

designated "R" to represent a flux reversal and "N" to represent no 

flux reversal). The average number of flux reversals per bit on a 

random bit stream pattern is 0.75. The best case (a repeating 

pattern of ones and zeros, "101010...") would be 0.25, the worst 

case (all ones or all zeros) would be 1: 

 

 Bit Pattern Encoding Pattern 
Flux Reversals 

Per Bit 

Bit Pattern 

Commonality In 

Random Bit Stream 

0 (preceded by 0) RN 1 25% 

0 (preceded by 1) NN 0 25% 

1 NR 1 50% 

Weighted Average 0.75 100% 

 

1x0,25 + 0x 0.25 +1*0.5=0.75 
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MFM 

 FM and MFM encoding write waveform for the byte "10001111". 

 

 As you can see, MFM encodes the same data in half as much 

space, by using half as many flux reversals per bit of data.  
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MFM 

 MFM encoding was used on the earliest hard disks, and also on 

floppy disks.  

 Since the MFM method about doubles the capacity of floppy disks 

compared to earlier FM ones, these disks were called "double 

density". In fact, MFM is still the standard that is used for floppy 

disks today.  

 For hard disks it was replaced by the more efficient RLL methods. 

This did not happen for floppy disks, presumably because the need 

for more efficiency was not nearly so great, compared to the need 

for backward compatibility with existing  
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Run Length Limited (RLL) 

 An improvement on the MFM encoding technique used in earlier 

hard disks and used on all floppies is run length limited or RLL.  

 

 This is a more sophisticated coding technique, or more correctly 

stated, "family" of techniques.  

 I say that RLL is a family of techniques because  

 there are 2 primary parameters that define how RLL works,  

 and therefore, there are several different variations.  
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Run Length Limited (RLL) 

 FM encoding has a simple one-to-one correspondence between the 

bit to be encoded and the flux reversal pattern.  

 

 You only need to know the value of the current bit.  

 

 MFM improves encoding efficiency over FM by more intelligently 

controlling where clock transitions are added into the data stream; 

this is enabled by considering not just the current bit but also the 

one before it. That's why there are is a different flux reversal pattern 

for a 0 preceded by another 0, and for a 0 preceded by a 1.  

 

 This "looking backwards" allows improved efficiency by letting the 

controller consider more data in deciding when to add clock 

reversals. 
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Run Length Limited (RLL) 

 RLL takes this technique one step further. It considers groups of 

several bits instead of encoding one bit at a time.  

 The idea is to mix clock and data flux reversals to allow for even 

denser packing of encoded data, to improve efficiency.  

 

 The two parameters that define RLL are the run length and the 

run limit (and hence the name).  

 

 The word "run" here refers to a sequence of spaces in the output 

data stream without flux reversals.  

 run length is the minimum spacing between flux reversals 

 run limit is the maximum spacing between them.  

 

 As mentioned before, the amount of time between reversals cannot 

be too large or the read head can get out of sync and lose track of 

which bit is where. 
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RLL 

 The particular variety of RLL used on a drive is expressed as "RLL 

(X,Y)" or "X,Y RLL" where X is the run length and Y is the run limit.  

 

 The most commonly used types of RLL in hard drives are "RLL 

(1,7)", also seen as "1,7 RLL"; and "RLL (2,7)" ("2,7 RLL").  

 

 Alright, now consider the spacing of potential flux reversals in the 

encoded magnetic stream. In the case of "2,7", this means that the 

the smallest number of "spaces" between flux reversals is 2, and 

the largest number is 7.  

 To create this encoding, a set of patterns is used to represent 

various bit sequences, as shown in the table below ("R" is a 

reversal, "N" no reversal, just as with the other data encoding 

examples): 
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RLL 

 The controller these patterns by parsing the bit stream to be encoded, and 

matching the stream based on the bit patterns it encounters. If we were 

writing the byte "10001111" (8Fh), this would be matched as "10-0011-11" 

and encoded as "NRNN-NNNNRNNN-RNNN". Note that the since every 

pattern above ends in "NN", the minimum distance between reversals is 

indeed two. The maximum distance would be achieved with consecutive 

"0011" patterns, resulting in "NNNNRNNN-NNNNRNNN" or seven non-

reversals between reversals. Thus, RLL (2,7). 

 
Bit Pattern Encoding Pattern 

Flux Reversals 

Per Bit 

Bit Pattern 

Commonality In 

Random Bit Stream 

11 RNNN 1/2 25% 

10 NRNN 1/2 25% 

011 NNRNNN 1/3 12.5% 

010 RNNRNN 2/3 12.5% 

000 NNNRNN 1/3 12.5% 

0010 NNRNNRNN 2/4 6.25% 

0011 NNNNRNNN 1/4 6.25% 

Weighted Average 0.4635 100% 
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RLL 

 Comparing the table above to the ones for FM and MFM, a few 

things become apparent. The most obvious is the increased 

complexity: seven different patterns are used, and up to four bits are 

considered a time for encoding.  

 

 The average number of flux reversals per bit on a random bit stream 

pattern is 0.4635, or about 0.50. This is about a third of the 

requirement for FM (and about two thirds that of MFM).  

 

 So relative to FM, data can be packed into one third the space. (For 

the example byte "10001111"  we have been using, RLL requires 3 

"R"s; MFM would require 7, and FM would need 13.) 
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RLL 

 2,7 RLL, FM and MFM encoding write waveform for the byte "10001111".  

 RLL improves further on MFM by reducing the amount of space required for 

the same data bits to one third that required for regular FM encoding.  

 

 

 

 

 

 

 

 

 

 

 

 Due to its greater efficiency, RLL encoding has replaced MFM everywhere 

but on floppy disks, where MFM continues to be used for historical 

compatibility reasons. 
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Partial Response, Maximum Likelihood (PRML) 

 Standard read circuits work by detecting flux reversals and 

interpreting them based on the encoding method that the controller 

knows has been used on the platters to record bits.  

 The data signal is read from the disk using the head, amplified, and 

delivered to the controller.  

 The controller converts the signal to digital information by analyzing 

it continuously, synchronized to its internal clock, and looking for 

small voltage spikes in the signal that represent flux reversals.  

 

 This traditional method of reading and interpreting hard disk data is 

called peak detection. 
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PRML 

 Conceptual drawing demonstrating the principles behind analog 

peak detection.  

 The circuitry scans the data read from the disk looking for positive 

or negative "spikes" that represent flux reversals on the surface of 

the hard disk platters  
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PRML 

 This method works fine as long as the peaks are large enough to be 

picked out from the background noise of the signal. As data density 

increases, the flux reversals are packed more tightly and the signal 

becomes much more difficult to analyze, because the peaks get 

very close together and start to interfere with each other.  

 This can potentially cause bits to be misread from the disk. Since 

this is something that must be avoided, in practical terms what 

happens instead is that the maximum areal density on the disk is 

limited to ensure that interference does not occur.  

 To take the next step up in density, the magnetic fields must be 

made weaker. This reduces interference, but causes peak detection 

to be much more difficult.  

 At some point it becomes very hard for the circuitry to actually tell 

where the flux reversals are. 
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PRML 

 Conceptual drawing demonstrating the principles behind PRML.  

 The data stream is sampled and analyzed using digital signal 

processing techniques  
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PRML 

 While this may seem like an odd (and unreliable) way to read data 

from a hard disk, it is in fact reliable enough that PRML, and its 

successor, EPRML, have become the standard for data decoding 

on modern hard disks.  

 PRML allows areal densities to be increased by a full 30-40% 

compared to standard peak detection, resulting in much greater 

capacities in the same number of platters. 
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Extended PRML (EPRML) 

 An evolutionary improvement on the PRML design has been 

developed over the last few years. Called extended partial 

response, maximum likelihood, extended PRML or just EPRML, this 

advance was the result of engineers tweaking the basic PRML 

design to improve its performance.  

 EPRML devices work in a similar way to PRML ones: they are still 

based on analyzing the analog data stream coming form the 

read/write head to determine the correct data sequence.  

 They just use better algorithms and signal-processing circuits to 

enable them to more effectively and accurately interpret the 

information coming from the disk. 
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EPRML 

 The chief benefit of using EPRML is that due to its higher 

performance, areal density (or more correctly, the linear component 

of areal density) can be increased without increasing the error rate. 

Claims regarding this increase range from around 20% to as much 

as 70%, compared to "regular" PRML. Those numbers represent a 

fairly significant improvement. 

 EPRML has now been widely adopted in the hard disk industry and 

is replacing PRML on new drives. 
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Hard Disk Tracks, Cylinders and Sectors  

 All information stored on a hard disk is recorded in tracks, which are 
concentric circles placed on the surface of each platter, much like the annual 
rings of a tree. The tracks are numbered, starting from zero, starting at the 
outside of the platter and increasing as you go in. A modern hard disk has tens 
of thousands of tracks on each platter. 

 

 

 

 

 

 

 

 

 

 

 

 

 A platter from a 5.25" hard disk, with 20 concentric tracks drawn 
over the surface. Each track is divided into 16 imaginary sectors. 

http://www.pcguide.com/ref/hdd/op/media.htm
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Hard Disk Tracks, Cylinders and Sectors  

 Data is accessed by moving the heads from the inner to the outer 

part of the disk, driven by the head actuator. This organization of 

data allows for easy access to any part of the disk, which is why 

disks are called random access storage devices. 

 

 Each track can hold many thousands of bytes of data. It would be 

wasteful to make a track the smallest unit of storage on the disk, 

since this would mean small files wasted a large amount of space. 

Therefore, each track is broken into smaller units called sectors.  

 

 Each sector holds 512 bytes of user data, plus as many as a few 

dozen additional bytes used for internal drive control and for error 

detection and correction. 

http://www.pcguide.com/ref/hdd/op/act.htm
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The Difference Between Tracks and Cylinders 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 This diagram illustrates what "cylinder" means on on a hard disk. This conceptual 
hard disk spindle has four platters, and each platter has three tracks shown on it. The 
cylinder indicated would be made up of the 8 tracks (2 per surface) intersected by the 
dotted vertical line shown.Image © Quantum Corporation 

 For most practical purposes, there really isn't much difference between tracks and 
cylinders--its basically a different way of thinking about the same thing. The 
addressing of individual sectors of the disk is traditionally done by referring to 
cylinders, heads and sectors (CHS). Since a cylinder is the collection of track 
numbers located at all of the heads of the disk, the specification "track number plus 
head number" is equal to "(cylinder number plus head number) plus head number", 
which is thus the same as "track number plus head number". 

http://www.quantum.com/


Slide 36 of 71 Hard Disk Geometry 

Track Density and Areal Density 
 The track density of a hard disk refers, unsurprisingly, to how tightly 

packed the tracks are on the surface of each platter. Every platter has the 
same track density. The greater the track density of a disk, the more 
information that can be placed on the hard disk. Track density is one 
component of areal density, which refers to the number of bits that can be 
packed into each unit of area on the surface of the disk. More is better--
both in terms of capacity and performance.  

 

 The earliest PC hard disks had only a few hundred tracks on them, and 
used larger 5.25" form factor platters, resulting in a track density of only a 
few hundred tracks per inch. Modern hard disks have tens of thousands of 
tracks and can have a density of 30,000 tracks per inch or more. 

 

 The chief obstacle to increasing track density is making sure that the tracks 
don't get close enough together that reading one track causes the heads to 
pick up data from adjacent tracks. To avoid this problem, magnetic fields 
are made weaker to prevent interference, which leads to other design 
impacts, such as the requirement for better read/write head technologies 
and/or the use of PRML methods to improve signal detection and 
processing. 

http://www.pcguide.com/ref/hdd/op/heads/tech.htm
http://www.pcguide.com/ref/hdd/geom/data_PRML.htm
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Zoned Bit Recording 
 One way that capacity and speed have been improved on hard disks over 

time is by improving the utilization of the larger, outer tracks of the disk. The 
first hard disks were rather primitive affairs and their controllers couldn't 
handle complicated arrangements that changed between tracks. As a 
result, every track had the same number of sectors. The standard for the 
first hard disks was 17 sectors per track. 

 Of course, the tracks are concentric circles, and the ones on the outside of 
the platter are much larger than the ones on the inside--typically double the 
circumference or more. Since there is a constraint on how tight the inner 
circles can be packed with bits, they were packed as tight as was practically 
possible given the state of technology, and then the outer circles were set 
to use the same number of sectors by reducing their bit density. This 
means that the outer tracks were greatly underutilized, because in theory 
they could hold many more sectors given the same linear bit density 
limitations. 

 To eliminate this wasted space, modern hard disks employ a technique 
called zoned bit recording (ZBR), also sometimes called multiple zone 
recording or even just zone recording. With this technique, tracks are 
grouped into zones based on their distance from the center of the disk, and 
each zone is assigned a number of sectors per track. As you move from the 
innermost part of the disk to the outer edge, you move through different 
zones, each containing more sectors per track than the one before. This 
allows for more efficient use of the larger tracks on the outside of the disk. 

http://www.pcguide.com/ref/hdd/op/media_Density.htm
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Zoned Bit Recording 
 

 

 

 

 

 

 

 

 

 

 

 A graphical illustration of zoned bit recording. This model hard disk 

has 20 tracks. They have been divided into five zones, each of which is shown as a 

different color. The blue zone has 5 tracks, each with 16 sectors; the cyan zone 5 

tracks of 14 sectors each; the green zone 4 tracks of 12 sectors; the yellow 3 

tracks of 11 sectors, and the red 3 tracks of 9 sectors. You can see that the size 

(length) of a sector remains fairly constant over the entire surface of the disk 

(contrast to the non-ZBR diagram on this page.) If not for ZBR, if the inner-most zone 

had its data packed as densely as possible, every track on this hard disk would be 

limited to only 9 sectors, greatly reducing capacity.  

http://www.pcguide.com/ref/hdd/op/media_Tracks.htm
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Zoned Bit Recording 

 One interesting side effect of this design is that the raw data transfer 

rate (sometimes called the media transfer rate) of the disk when 

reading the outside cylinders is much higher than when reading the 

inside ones. This is because the outer cylinders contain more data, 

but the angular velocity of the platters is constant regardless of 

which track is being read (note that this constant angular velocity is 

not the case for some technologies, like older CD-ROM drives!) 

Since hard disks are filled from the outside in, the fastest data 

transfer occurs when the drive is first used.  

 Sometimes, people benchmark their disks when new, and then 

many months later, and are surprised to find that the disk is getting 

slower! In fact, the disk most likely has not changed at all, but the 

second benchmark may have been run on tracks closer to the 

middle of the disk. (Fragmentation of the file system can have an 

impact as well in some cases.) 
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Zoned Bit Recording 

 As an example, the table 

below shows the zones 

used by a 3.8 GB Quantum 

Fireball TM hard disk, 

which has a total of 6,810 

user data tracks on each 

platter surface. Also 

included is the raw data 

transfer rate for each zone; 

notice how it decreases as 

you move from the outer 

edge of the disk (zone 0) to 

the hub of the disk (zone 

14)--the data transfer rate 

at the edge is almost 

double what it is in the 

middle: 

 

Zone 
Tracks in 

Zone 
Sectors Per 

Track 
Data Transfer Rate 

(Mbits/s) 

0 454 232 92.9 

1 454 229 91.7 

2 454 225 90.4 

3 454 225 89.2 

4 454 214 85.8 

5 454 205 82.1 

6 454 195 77.9 

7 454 185 74.4 

8 454 180 71.4 

9 454 170 68.2 

10 454 162 65.2 

11 454 153 61.7 

12 454 142 57.4 

13 454 135 53.7 

14 454 122 49.5 

 

(From Quantum Fireball TM Product 

Manual, © 1996 Quantum Corporation.) 

http://www.pcguide.com/ref/hdd/geom/tracksZBR-c.html
http://www.pcguide.com/ref/hdd/perf/perf/spec/trans_Media.htm
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Zoned Bit Recording 

 A couple of additional 
thoughts on this data. First, 
having the same number of 
tracks per zone is not a 
requirement; that is just how 
Quantum set up this disk 
family. (Compare to the 
newer IBM drive below.) 
Second, notice how much 
larger the sector per track 
numbers are, compared to 
the 17 of the earliest disks! 
Modern drives can pack a lot 
of storage into a track. Also, 
this is a 1996-era drive; 
modern units have even 
higher numbers of sectors 
per track in all zones, and 
much higher data transfer 
rates. Here's the same chart 
for the 20 GB/platter, 5400 
RPM IBM 40GV drive: 

 

Zone 
Tracks in 

Zone 
Sectors Per 

Track 
Data Transfer Rate 

(Mbits/s) 

0 624 792 372.0 

1 1,424 780 366.4 

2 1,680 760 357.0 

3 1,616 740 347.6 

4 2,752 720 338.2 

5 2,880 680 319.4 

6 1,904 660 310.0 

7 2,384 630 295.9 

8 3,328 600 281.8 

9 4,432 540 253.6 

10 4,528 480 225.5 

11 2,192 440 206.7 

12 1,600 420 197.3 

13 1,168 400 187.9 

14 18,15 370 173.8 

 

(From Deskstar 40GV and 75GXP Product 

Manual, © 2000 IBM Corporation.) 



Slide 42 of 71 Hard Disk Geometry 

Zoned Bit Recording 

 The standard BIOS settings for IDE/ATA hard disks only allow the 

specification of a single number for "sectors per track". Since all 

modern hard disks use ZBR and don't have a single number of 

sectors per track across the disk, they use logical geometry for the 

BIOS setup. IDE hard disks up to 8.4 GB usually tell the BIOS 63 

sectors per track and then translate to the real geometry internally; 

no modern drive uses 63 sectors on any track, much less all of 

them. Hard drives over 8.4 GB can't have their parameters 

expressed using the IDE BIOS geometry parameters anyway 

(because the regular BIOS limit is 8.4 GB) so these drives always 

have 63 sectors per track as "dummy" geometry parameters, and 

are accessed using logical block addressing. (See here for further 

discussion.) 

 All of the above is one reason why modern drives are low-level 

formatted at the factory. The hard disk controller has to know the 

intricate details of the various recording zones, how many sectors 

are in each track for each zone, and how everything is organized. 

http://www.pcguide.com/ref/mbsys/bios/set/ide.htm
http://www.pcguide.com/ref/hdd/bios/size.htm
http://www.pcguide.com/ref/hdd/bios/size.htm
http://www.pcguide.com/ref/hdd/geom/format_Low.htm
http://www.pcguide.com/ref/hdd/geom/format_Low.htm
http://www.pcguide.com/ref/hdd/geom/format_Low.htm
http://www.pcguide.com/ref/hdd/geom/format_Low.htm
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Write Precompensation 

 As discussed in the section on zoned bit recording, older hard 

disks used the same number of sectors per track. This meant that 

older disks had a varying bit density as you moved from the 

outside edge to the inner part of the platter.  

 Many of these older disks required that an adjustment be made 

when writing the inside tracks, and a setting was placed in the 

BIOS to allow the user to specify at what track number this 

compensation was to begin. 

 

 This entire matter is no longer relevant to modern hard disks, but 

the BIOS setting remains for compatibility reasons. Write 

precompensation is not done with today's drives; even if it were, the 

function would be implemented within the integrated controller and 

would be transparent to the user. 

http://www.pcguide.com/ref/hdd/geom/tracksZBR-c.html
http://www.pcguide.com/ref/mbsys/bios/set/ide_Write.htm
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Interleaving 
 A common operation when working with a hard disk is reading or writing a number of 

sectors of information in sequence. After all, a sector only contains 512 bytes of user 
data, and most files are much larger than that. Let's assume that the sectors on each 
track are numbered consecutively, and say that we want to read the first 10 sectors 
of a given track on the hard disk. Under ideal conditions, the controller would read 
the first sector, then immediately read the second, and so on, until all 10 sectors had 
been read. Just like reading 10 words in a row in this sentence. 

 However, the physical sectors on a track are adjacent to each other and not 
separated by very much space. Reading sectors consecutively requires a certain 
amount of speed from the hard disk controller. The platters never stop spinning, and 
as soon as the controller is done reading all of sector #1, it has little time before the 
start of sector #2 is under the head. Many older controllers used with early hard disks 
did not have sufficient processing capacity to be able to do this. They would not be 
ready to read the second sector of the track until after the start of the second 
physical sector had already spun past the head, at which point it would be too late. 

 If the controller is slow in this manner, and no compensation is made in the 
controller, the controller must wait for almost an entire revolution of the platters 
before the start of sector #2 comes around and it can read it. Then, of course, when 
it tried to read sector #3, the same thing would happen, and another complete 
rotation would be required. All this waiting around would kill performance: if a disk 
had 17 sectors per track, it would take 17 times as long to read those 10 sectors as it 
should have in the ideal case! 
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Interleaving 
 To address this problem, older controllers employed a function called interleaving, 

allowing the setting of a disk parameter called the interleave factor. When 
interleaving is used, the sectors on a track are logically re-numbered so that they do 
not correspond to the physical sequence on the disk. The goal of this technique is to 
arrange the sectors so that their position on the track matches the speed of the 
controller, to avoid the need for extra "rotations". Interleave is expressed as a ratio, 
"N:1", where "N" represents how far away the second logical sector is from the first, 
how far the third is from the second, and so on. 

 An example is the easiest way to demonstrate this method. The standard for older 
hard disks was 17 sectors per track. Using an interleave factor of 1:1, the sectors 
would be numbered 1, 2, 3, .. , 17, and the problem described above with the 
controller not being ready in time to read sector #2 would often occur for sequential 
reads. Instead, an interleave factor of 2:1 could be used. With this arrangement, the 
sectors on a 17-sector track would be numbered as follows: 1, 10, 2, 11, 3, 12, 4, 13, 
5, 14, 6, 15, 7, 16, 8, 17, 9. Using this interleave factor means that while sector 1 is 
being processed, sector 10 is passing under the read head, and so when the 
controller is ready, sector 2 is just arriving at the head. To read the entire track, two 
revolutions of the platters are required. This is twice as long as the ideal case (1:1 
interleaving with a controller fast enough to handle it) but it is almost 90% better than 
what would result from using 1:1 interleaving with a controller that is too slow (which 
would mean 17 rotations were required). 

 What if the controller was too slow for a 2:1 interleave? It might only be fast enough 
to read every third physical sector in sequence. If so, an interleave of 3:1 could be 
used, with the sectors numbered as follows: 1, 7, 13, 2, 8, 14, 3, 9, 15, 4, 10, 16, 5, 
11, 17, 6, 12. Again here, this would reduce performance compared to 2:1, if the 
controller was fast enough for 2:1, but it would greatly improve performance if the 
controller couldn't handle 2:1. 
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Interleaving 
 So this begs the question then: how do you know what interleave factor to 

use? Well, on older hard disks, the interleave factor was one parameter that 
had to be tinkered with to maximize performance. Setting it too 
conservatively caused the drive to not live up to its maximum potential, but 
setting it too aggressively could result in severe performance hits due to 
extra revolutions being needed. The perfect interleave setting depended on 
the speeds of the hard disk, the controller, and the system. Special utilities 
were written to allow the analysis of the hard disk and controller, and would 
help determine the optimal interleave setting. The interleave setting would 
be used when the drive was low-level formatted, to set up the sector 
locations for each track. 

 On modern disk drives, the interleave setting is always 1:1. Controller too 
slow? Ha! Today's controllers are so fast, much of the time they sit around 
waiting for the platters, tapping their virtual fingers. How did this situation 
come to change so drastically in 15 years? Well, it's pretty simple. The 
spindle speed of a hard disk has increased from 3,600 RPM on the first 
hard disks, to today's standards of 5,400 to 10,000 RPM. An increase in 
speed of 50% to 177%. The faster spindle speed means that much less 
time for the controller to be ready before the next physical sector comes 
under the head. However, look at what processing power has done in the 
same time frame: CPUs have gone from 4.77 MHz speeds to the environs 
of 1 GHz; an increase of over 20,000%! The speed of other chips in the PC 
and its peripherals have similarly gotten faster by many multiples. 

http://www.pcguide.com/ref/hdd/op/spin_Speed.htm
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Cylinder and Head Skew 

 Sector interleaving was once used on older hard disks to ensure that the 

sectors were efficiently spaced on the track. This was needed to ensure 

that sector #2 didn't rotate past the head while sector #1 was being 

processed. The high-speed disk controllers on modern drives are now fast 

enough that they no longer are a performance-limiting factor in how the 

sectors on the disk are arranged.  

 However, there are other delay issues within the drive that require spacing 

to be optimized in even the fastest drives, to maximize performance. And 

unlike the interleaving situation, these delays are caused by 

electromechanical concerns and are therefore likely to be with us for as 

long as hard drives use their current general design. 

 The first issue is the delay in time incurred when switching between 

cylinders on the hard disk, called appropriately enough, cylinder switch 

time. Let's imagine that we "lined up" all of the tracks on a platter so that 

the first sector on each track started at the same position on the disk. Now 

let's say that we want to read the entire contents of two consecutive tracks, 

a fairly common thing to need to do. We read all the sectors of track #1 (in 

sequence, since we can use a 1:1 interleave) and then switch to track #2 to 

start reading it at its first sector. 

http://www.pcguide.com/ref/hdd/geom/tracksInterleaving-c.html
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Cylinder and Head Skew 
 The problem here is that it takes time to physically move the heads (or more actually, 

the actuator assembly) to track #2. In fact, it often takes a millisecond or more. Let's 
consider a modern 10,000 RPM drive. The IBM Ultrastar 72ZX has a specification of 
only 0.6 milliseconds for seeking from one track to an adjacent one. That's actually 
quite fast by today's standards. But consider that in that amount of time, a 10,000 
RPM drive will perform approximately 10% of a complete revolution of the platters! If 
sector #1 on track #2 is lined up with sector #1 on track #1, it will be long gone by the 
time we switch from track #1 to track #2. We'd have to wait for the remaining 90% of 
a revolution of the platters to do the next read, a big performance penalty. This 
problem isn't as bad as the interleave one was, because it occurs only when 
changing tracks, and not every sector. But it's still bad, and it's avoidable. 

 The issue is avoided by offsetting the start sector of adjacent tracks to minimize the 
likely wait time (rotational latency) when switching tracks. This is called cylinder 
skew. Let's say that in the particular zone where tracks #1 and #2 are, there are 450 
sectors per track. If 10% of the disk spins by on a track-to-track seek, 45 sectors go 
past. Allowing some room for error and controller overhead, perhaps the design 
engineers would shift each track so that sector #1 of track #2 was adjacent to sector 
#51 of track #1. Similarly, sector #1 of track #3 would be adjacent to sector #51 of 
track #2 (and hence, adjacent to sector #101 of track #1). And so on. By doing this, 
we can read multiple adjacent tracks virtually seamlessly, and with no performance 
hit due to unnecessary platter rotations. 

 The same problem, only to a lesser degree, occurs when we change heads within a 
cylinder. Here there is no physical movement, but it still takes time for the switch 
to be made from reading one head to reading another, so it makes sense to 
offset the start sector of tracks within the same cylinder so that after reading from the 
first head/track in the cylinder, we can switch to the next one without losing our 
"pace". This is called head skew. Since switching heads takes much less time than 
switching cylinders, head skew usually means a smaller number of sectors being 
offset than cylinder skew does. 

http://www.pcguide.com/ref/hdd/op/act.htm
http://www.pcguide.com/ref/hdd/perf/perf/spec/pos_Latency.htm
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Cylinder and Head Skew 
 These two diagrams illustrate the concept of cylinder and head skew. 

Assume that these platters spin counter-clockwise (as seen from your 

vantage point) and that they are adjacent to each other (they might be the 

two surfaces of the same platter.)  They each have a cylinder skew of 3, 

meaning that adjacent tracks are offset by three sectors. In addition, the 

platter on the right has a head skew of one relative to the one on the left.  
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Sector Format and Structure 
 In the PC world, each sector of a hard disk can store 512 bytes of user data. (There 

are some disks where this number can be modified, but 512 is the standard, and 
found on virtually all hard drives by default.) Each sector, however, actually holds 
much more than 512 bytes of information. Additional bytes are needed for control 
structures and other information necessary to manage the drive, locate data and 
perform other "support functions". The exact details of how a sector is structured 
depends on the drive model and manufacturer. However, the contents of a sector 
usually include the following general elements:  

 ID Information: Conventionally, space is left in each sector to identify the sector's 
number and location. This is used for locating the sector on the disk. Also included 
in this area is status information about the sector. For example, a bit is commonly 
used to indicate if the sector has been marked defective and remapped. 

 Synchronization Fields: These are used internally by the drive controller to guide 
the read process. 

 Data: The actual data in the sector. 

 ECC: Error correcting code used to ensure data integrity. 

 Gaps: One or more "spacers" added as necessary to separate other areas of the 
sector, or provide time for the controller to process what it has read before reading 
more bits. 

 Note: In addition to the sectors, each containing the items above, space on each 
track is also used for servo information (on embedded servo drives, which is the 
design used by all modern units). 
 

http://www.pcguide.com/ref/hdd/geom/format_Defect.htm
http://www.pcguide.com/ref/hdd/geom/error_ECC.htm
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Sector Format and Structure 
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Hard Disk Formatting and Capacity 

 Most PC users are familiar with the concept that a hard disk--in fact, 

all storage media--must be formatted before it can be used. There is 

usually some confusion, however, regarding exactly what formatting 

means and what it does. This is exacerbated by the fact that 

modern hard disks are not formatted in the same way that older 

ones were, and also the fact that the utilities used for formatting 

behave differently when acting on hard disks than when used for 

floppy disks. 

 This section takes a look at issues surrounding disk formatting and 

capacity, discusses unformatted and formatted hard disk capacity, 

and looks briefly at formatting utilities. 
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Two Formatting Steps 
 Many PC users don't realize that formatting a hard disk isn't done in a single 

step. In fact, three steps are involved:  

 Low-Level Formatting: This is the "true" formatting process for the disk. It 
creates the physical structures (tracks, sectors, control information) on 
the hard disk. Normally, this step begins with the hard disk platters "clean", 
containing no information. It is discussed in more detail here. 

 Partitioning: This process divides the disk into logical "pieces" that become 
different hard disk volumes (drive letters). This is an operating system function 
and is discussed in detail in its own section. 
 

 High-Level Formatting: This final step is also an operating-system-level 
command. It defines the logical structures on the partition and places at the 
start of the disk any necessary operating system files.  
 

 As you can see, two of the three steps are "formatting", and this dual use of 
the word is a big part of what leads to a lot of confusion when the term 
"formatting" is used. Another strange artifact of history is that the DOS 
"FORMAT" command behaves differently when it is used on a hard disk than 
when it is used on a floppy disk. Floppy disks have simple, standard geometry 
and cannot be partitioned, so the FORMAT command is programmed to 
automatically both low-level and high-level format a floppy disk, if necessary. 
For hard disks, however, FORMAT will only do a high-level format. Low-level 
formatting is performed by the controller for older drives, and at the factory for 
newer drives. 

http://www.pcguide.com/ref/hdd/geom/formatLow-c.html
http://www.pcguide.com/ref/hdd/file/part.htm
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Low-Level Formatting 
 Low-Level Formatting 

 Low-level formatting is the process of outlining the positions of the tracks and sectors on the hard 
disk, and writing the control structures that define where the tracks and sectors are. This is often 
called a "true" formatting operation, because it really creates the physical format that defines 
where the data is stored on the disk. The first time that a low-level format ("LLF") is performed on 
a hard disk, the disk's platters start out empty. That's the last time the platters will be empty for 
the life of the drive. If an LLF is done on a disk with data on it already, the data is permanently 
erased (save heroic data recovery measures which are sometimes possible). 

 If you've explored other areas of this material describing hard disks, you have learned that 
modern hard disks are much more precisely designed and built, and much more complicated than 
older disks. Older disks had the same number of sectors per track, and did not use dedicated 
controllers. It was necessary for the external controller to do the low-level format, and quite easy 
to describe the geometry of the drive to the controller so it could do the LLF. Newer disks use 
many complex internal structures, including zoned bit recording to put more sectors on the outer 
tracks than the inner ones, and embedded servo data to control the head actuator. They also 
transparently map out bad sectors. Due to this complexity, all modern hard disks are low-level 
formatted at the factory for the life of the drive. There's no way for the PC to do an LLF on a 
modern IDE/ATA or SCSI hard disk, and there's no reason to try to do so. 

 Older drives needed to be re-low-level-formatted occasionally because of the thermal expansion 
problems associated with using stepper motor actuators. Over time, the tracks on the platters 
would move relative to where the heads expected them to be, and errors would result. These 
could be corrected by doing a low-level format, rewriting the tracks in the new positions that the 
stepper motor moved the heads to. This is totally unnecessary with modern voice-coil-actuated 
hard disks. 

 Warning: You should never attempt to do a low-level format on an IDE/ATA or SCSI hard disk. 
Do not try to use BIOS-based low-level formatting tools on these newer drives. It's unlikely that 
you will damage anything if you try to do this (since the drive controller is programmed to ignore 
any such LLF attempts), but at best you will be wasting your time. A modern disk can usually be 
restored to "like-new" condition by using a zero-fill utility  

http://www.pcguide.com/ref/hdd/geom/formatLow-c.html
http://www.pcguide.com/ref/hdd/geom/geom.htm
http://www.pcguide.com/ref/hdd/geom/tracks_ZBR.htm
http://www.pcguide.com/ref/hdd/op/act_Servo.htm
http://www.pcguide.com/ref/hdd/geom/error_Mapping.htm
http://www.pcguide.com/ref/hdd/op/act_Actuator.htm
http://www.pcguide.com/ref/hdd/geom/formatUtilities-c.html
http://www.pcguide.com/ref/hdd/geom/formatUtilities-c.html
http://www.pcguide.com/ref/hdd/geom/formatUtilities-c.html
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High-Level Formatting 
 After low-level formatting is complete, we have a disk with tracks and 

sectors--but nothing written on them. High-level formatting is the process of 
writing the file system structures on the disk that let the disk be used for 
storing programs and data. If you are using DOS, for example, the DOS 
FORMAT command performs this work, writing such structures as the 
master boot record and file allocation tables to the disk. High-level 
formatting is done after the hard disk has been partitioned, even if only one 
partition is to be used. See here for a full description of DOS structures, 
also used for Windows 3.x and Windows 9x systems. 

 The distinction between high-level formatting and low-level formatting is 
important. It is not necessary to low-level format a disk to erase it: a high-
level format will suffice for most purposes; by wiping out the control 
structures and writing new ones, the old information is lost and the disk 
appears as new. (Much of the old data is still on the disk, but the access 
paths to it have been wiped out.) Under some circumstances a high-level 
format won't fix problems with the hard disk and a zero-fill utility may be 
necessary. 

 Different operating systems use different high-level format programs, 
because they use different file systems. However, the low-level format, 
which is the real place where tracks and sectors are recorded, is the same. 

http://www.pcguide.com/ref/hdd/file/prog_FORMAT.htm
http://www.pcguide.com/ref/hdd/file/prog_FORMAT.htm
http://www.pcguide.com/ref/hdd/file/part.htm
http://www.pcguide.com/ref/hdd/file/struct.htm
http://www.pcguide.com/ref/hdd/geom/formatUtilities-c.html
http://www.pcguide.com/ref/hdd/geom/formatUtilities-c.html
http://www.pcguide.com/ref/hdd/geom/formatUtilities-c.html
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Defect Mapping and Spare Sectoring 
 Despite the precision manufacturing processes used to create hard disks, it is virtually 

impossible to create a disk with tens of millions of sectors and not have some errors show 
up. Imperfections in the media coating on the platter or other problems can make a sector 
inoperable. A problem with a sector, if uncorrected, would normally manifest as an error 
when attempting to read or write the sector, but can appear in other ways as well. Most of 
us have experienced these errors on occasion when using floppy disk drives. 

 Modern disks use ECC to help identify when errors occur and in some cases correct 
them, however, there will still be physical flaws that ECC cannot overcome, and that 
therefore prevent parts of a disk from being used. Usually these are individual sectors that 
don't work, and they are appropriately enough called bad sectors. Tracks where there are 
bad sectors are sometimes called bad tracks. 

 If you've ever used a disk information utility on a floppy disk (or on a very old hard disk), 
you've likely at some point seen a report showing a few kilobytes worth of bad sectors. 
However, if you run such a utility on a modern hard disk, you will normally never see any 
reports of bad sectors on the disk. Why is this? 

 Sectors that are bad cannot be used to store data, for obvious reasons: they are bad 
because they cannot be trusted to reliably write and/or reproduce the data at a later time. 
It is therefore necessary for some part of the system to keep track of where they are, and 
not use them. The best way for this to be done is for the drive to detect and avoid them. If 
the drive does not do this, the operating system must do it. If any bad sectors are not 
detected until after they have been used, data loss will probably result. 

 To allow for maximum reliability then, each disk drive is thoroughly tested for any areas 
that might have errors at the time it is manufactured. All the sectors that have problems or 
are thought to be unreliable, are recorded in a special table. This is called defect 
mapping. Some drives go even further than this, mapping out not only the sectors that are 
questionable, but the ones surrounding them as well. Some drives will map out entire 
tracks as a safety precaution. 

http://www.pcguide.com/ref/hdd/op/media_Media.htm
http://www.pcguide.com/ref/hdd/geom/error_ECC.htm
http://www.pcguide.com/ref/hdd/geom/formatDefect-c.html
http://www.pcguide.com/ref/hdd/geom/formatDefect-c.html
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Defect Mapping and Spare Sectoring 
 On older hard disks, these problem areas were actually recorded right on the top cover 

of the disk, usually in hand-writing by the technician testing the drive! This process was 
necessary because low-level formatting was done by the company assembling the PC--
or even the end-user--and this information was used to tell the controller which areas of 
the disk to avoid when formatting the disk. Part of the low-level format process was to 
have the person doing the LLF tell the controller which sectors were bad, so it would 
avoid them, and also tell any high-level format program not to try to use that part of the 
disk. These markings are what cause "bad sectors" reports to show up when examining 
older hard disks: these are the areas the disk has been told not to use. Since floppy 
disks are low-level formatted and high-level formatted at the same time, the same 
situation applies, even today. If any sectors cannot be reliably formatted, they are 
marked as "bad" and the operating system will stay away from them. 

 While early PC users accepted that a few bad sectors on a drive was normal, there was 
something distasteful about plopping down $1,000 for a new hard disk and having it 
report "bad sectors" as soon as you turned it on. There is no way to produce 100% 
perfect hard disks without them costing a small fortune, so hard disk manufacturers 
devised an interesting compromise. 

 On modern hard disks, a small number of sectors are reserved as substitutes for any 
bad sectors discovered in the main data storage area. During testing, any bad sectors 
that are found on the disk are programmed into the controller. When the controller 
receives a read or write for one of these sectors, it uses its designated substitute 
instead, taken from the pool of extra reserves. This is called spare sectoring. In fact, 
some drives have entire spare tracks available, if they are needed. This is all done 
completely transparently to the user, and the net effect is that all of the drives of a given 
model have the exact same capacity and there are no visible errors. This means that 
the operating system never sees the bad areas, and therefore never reports "bad 
sectors". They are still there though, just cleverly hidden. 

http://www.pcguide.com/ref/hdd/geom/formatDefect-c.html
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Defect Mapping and Spare Sectoring 
 Really, when you think about it, the hard disk companies are sacrificing a small amount of storage 

for "good looks". It would be more efficient to use all of the sectors on the disk and just map out 
the few bad ones. However, sometimes marketing wins out over engineering, and it seems that 
more people want the warm feeling of thinking they have a perfect drive, even if it costs them 
theoretical storage in the process. Today's drives are so enormous that few people would even 
care much anyway about a few extra megabytes, but that wasn't always the case! 

 Due to spare sectoring, a brand new disk should not have any bad sectors. It is possible, 
however, for a modern IDE/ATA or SCSI hard disk to develop new bad sectors over time. These 
will normally be detected either during a routine scan of the hard disk for errors (the easy way) or 
when a read error is encountered trying access a program or data file (the hard way). When this 
happens, it is possible to tell the system to avoid using that bad area of the disk. Again, this can 
be done two ways. At the high level, the operating system can be told to mark the area as bad 
and avoid it (creating "bad sector" reports at the operating system level.). Alternately, the disk 
itself can be told at a low level to remap the bad area and use one of its spares instead. This is 
normally done by using a zero-fill or diagnostic utility, which will scan the entire disk surface for 
errors and tell the controller to map out any problem areas. 

 Warning: Bad sectors on a modern hard disk are almost always an indication of a greater 
problem with the disk. A new hard disk should never have bad sectors on it; if you buy one that 
does have bad sectors, immediately return it to the vendor for exchange (and don't let them tell 
you "it's normal", because it isn't.) For existing hard disks, the vast majority of time, a single bad 
sector that appears will soon be accompanied by friends. While you can map out and ignore bad 
sectors, you should make sure to contact the vendor if you see bad sectors appearing during 
scans, and make sure the data is backed up as well. Personally, I will not use any hard disk that 
is developing bad sectors. The risk of data loss is too high, and hard drives today are inexpensive 
compared to the cost of even an hour or two of recovering lost data (which takes a lot more than 
an hour or two!) See here for more on troubleshooting hard disk errors. 
 

 On some disks, remapped sectors cause a performance penalty. The drive first seeks and reads 
the sector header of the data, thinking it will be there; then, it sees that the sector has been 
remapped, and has to do another seek for the new sector. Newer drives using the No-ID sector 
format eliminate this problem by storing a format map, including sector remaps, in the memory of 
the drive's controller. See the discussion of sector format for more  

http://www.pcguide.com/care/data/det.htm
http://www.pcguide.com/ref/hdd/geom/formatUtilities-c.html
http://www.pcguide.com/ref/hdd/geom/formatUtilities-c.html
http://www.pcguide.com/ref/hdd/geom/formatUtilities-c.html
http://www.pcguide.com/ref/hdd/geom/formatDefect-c.html
http://www.pcguide.com/ts/x/comp/hdd/errors.htm
http://www.pcguide.com/ref/hdd/geom/tracks_Sector.htm
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Low-Level Format, Zero-Fill and Diagnostic 

Utilities 
 Hard drive manufacturers have created for modern drives replacements for 

the old LLF utilities. They cause some confusion, because they are often 

still called "low-level format" utilities. The name is incorrect because, again, 

no utility that a user can run on a PC can LLF a modern drive. A more 

proper name for this sort of program is a zero-fill and diagnostic 

utility. This software does work on the drive at a low level, usually 

including the following functions (and perhaps others):  

 Drive Recognition Test: Lets you test to see if the software can "see" the 

drive. This is the first step in ensuring that the drive is properly installed and 

connected. 

 Display Drive Details: Tells you detailed information about the drive, such 

as its exact model number, firmware revision level, date of manufacture, 

etc. 

 Test For Errors: Analyzes the entire surface of the hard disk, looking for 

problem areas (bad sectors) and instructing the integrated drive controller 

to remap them. 

 Zero-Fill: Wipes off all data on the drive by filling every sector with zeroes. 

Normally a test for errors (as above) is done at the same time. 

http://www.pcguide.com/ref/hdd/op/logic_Firmware.htm
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Unformatted and Formatted Capacity 
 Some portion of the space on a hard disk is taken up by the formatting 

information that marks the start and end of sectors, ECC, and other 
"overhead". For this reason, a hard disk's storage total depends on if you 
are looking at the formatted or unformatted capacity. The difference can be 
quite significant: 20% or even more. 

 Older drives that were typically low-level formatted by the user, often had 
their size listed in terms of unformatted capacity. For example, take the 
Seagate ST-412, the first drive used on the original IBM PC/XT in the early 
1980s. The "12" in this model number refers to the drive's unformatted 
capacity of 12.76 MB. Formatted, it is actually a 10.65 MB drive. 

 Now, let's be honest: stating the capacity of the hard disk in unformatted 
terms is lame. Since nobody can use a drive that is unformatted, the only 
thing that matters is the formatted capacity. Stating the drive in terms of 
unformatted capacity is not quite as bad as how tape drive manufacturers 
always report the size of their drives assuming 2:1 compression, of course. 
But it's still lame. :^) 

 Fortunately, this is no longer an issue today. Since modern drives are 
always low-level formatted at the factory, it would be extremely weird to 
state their sizes in terms of unformatted capacity, and manufacturers have 
stopped doing this. In fact, there usually isn't any easy way to find out the 
unformatted capacity of new drives! So to take another example from our 
friends at Seagate, the ST-315330A, the "15330" refers to the drive's 
approximate formatted capacity, 15,364 MB (15.4 GB). 

http://www.pcguide.com/ref/hdd/geom/error_ECC.htm
http://www.pcguide.com/ref/hdd/geom/formatLow-c.html
http://www.pcguide.com/ref/hdd/geom/formatLow-c.html
http://www.pcguide.com/ref/hdd/geom/formatLow-c.html
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Binary vs. Decimal Capacity Measurements 

 Computer measurements are expressed in both binary and decimal terms, often 
using the same notation. Due to a mathematical coincidence, the fact that 2^10 
(1024) is almost the same number as 10^3 (1000), there are two similar but different 
ways to express a megabyte or a gigabyte. This phenomenon, and the general 
problems it causes, are discussed in detail in this fundamentals section. I also 
discuss there how and why I have begun using alternative measurement notations 
for binary numbers. 

 The problems with binary and decimal are probably more noticed in the area of hard 
disk capacity than anywhere else. Hard disk manufacturers always use decimal 
figures for their products' capacity: a 72 GB hard disk has about 72,000,000,000 
bytes of storage. However, hard disk makers also use binary numbers where they 
are normally used--for example, buffer capacities are expressed in binary kilobytes or 
megabytes--but the same notation ("kB" or "MB") is used as for decimal figures. Hard 
disks are large, and larger numbers cause the discrepancy between decimal and 
binary terms to be exaggerated. For example, a 72 GB hard disk, expressed in 
binary terms, is "only" 67 GB. Since most software uses binary terms, this difference 
in numbers is the source of frequent confusion regarding "where the rest of the 
gigabytes went". In fact, they didn't go anywhere. It's just a different way of 
expressing the same thing. 

 This is also the source of much confusion surrounding 2.1 GB hard disks (or 2.1 GB 
hard disk volumes) and the 2 GB DOS limit on partition size. Since DOS uses binary 
gigabytes, and 2.1 GB hard disks are expressed in decimal terms, a 2.1 GB hard 
disk can in fact be entirely placed within a single DOS partition. 2.1 decimal 
gigabytes is actually 1.96 binary gigabytes. Another example is the BIOS limit on 
regular IDE/ATA hard disks, which is either 504 MB or 528 MB, depending on which 
"MB" you are talking about. 

http://www.pcguide.com/intro/fun/bindec.htm
http://www.pcguide.com/ref/hdd/op/cache_Size.htm
http://www.pcguide.com/ref/hdd/bios/size_GB2.htm
http://www.pcguide.com/ref/hdd/bios/size_MB504.htm
http://www.pcguide.com/ref/hdd/bios/size_MB504.htm
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Hard Disk Geometry Specifications and 

Translation 
 The generic term used to refer to the way the disk structures its data 

into platters, tracks and sectors, is its geometry. In the early days 

this was a relatively simple concept: the disk had a certain number 

of heads, tracks per surface, and sectors per track. These were 

entered into the BIOS set up so the PC knew how to access the 

drive, and that was basically that. 

 With newer drives the situation is more complicated. The simplistic 

limits placed in the older BIOSes have persisted to this day, but the 

disks themselves have moved on to more complicated ways of 

storing data, and much larger capacities. The result is that tricks 

must be employed to ensure compatibility between old BIOS 

standards and newer hard disks. 

 Note: These issues relate to IDE/ATA hard disks, not SCSI drives, 

which use a different addressing methodology. 

 

http://www.pcguide.com/ref/hdd/geom/geom-c.html
http://www.pcguide.com/ref/hdd/if/ide/index.htm
http://www.pcguide.com/ref/hdd/if/scsi/index.htm
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Physical Geometry 
 The physical geometry of a hard disk is the actual physical number of heads, cylinders and 

sectors used by the disk. On older disks this is the only type of geometry that is ever used--the 
physical geometry and the geometry used by the PC are one and the same. The original setup 
parameters in the system BIOS are designed to support the geometries of these older drives. 
Classically, there are three figures that describe the geometry of a drive: the number of cylinders 
on the drive ("C"), the number of heads on the drive ("H") and the number of sectors per track 
("S"). Together they comprise the "CHS" method of addressing the hard disk. This method of 
description is described in more detail in this description of CHS mode addressing. 

 At the time the PC BIOS interfaces to the hard disk were designed, hard disks were simple. They 
had only a few hundred cylinders, a few heads and all had the same number of sectors in each 
track. Today's drives do not have simple geometries; they use zoned bit recording and therefore 
do not have the same number of sectors for each track, and they use defect mapping to remove 
bad sectors from use. As a result, their geometry can no longer be described using simple "CHS" 
terms. These drives must be accessed using logical geometry figures, with the physical geometry 
hidden behind routines inside the drive controller. For a comparison of physical and logical 
geometry, see this page on logical geometry. 

 Often, you have to request detailed specifications for a modern drive to find out the true physical 
geometry. Even then you might have problems--I called one major drive manufacturer when first 
writing the site, and the technician had no idea what I was talking about. He kept giving me the 
logical parameters and insisting they were the physical ones. Finally, I asked him how his drive 
could have 16 heads when it had only 3 platters, and he got very confused. :^) 

 Tip: It's easy to tell if you are looking at physical or logical hard disk geometry numbers. Since no 
current hard drive has the same number of sectors on each track, if you are given a single 
number for "sectors per track", that must be a logical parameter. Also, I am aware of no current 
hard disk product that uses 8 platters and either 15 or 16 heads. However, all modern, larger 
IDE/ATA hard disks have a nominal logical geometry specification of 15 or 16 heads, so either of 
those numbers is a dead giveaway.  

http://www.pcguide.com/ref/mbsys/bios/set/ide.htm
http://www.pcguide.com/ref/mbsys/bios/set/ide.htm
http://www.pcguide.com/ref/hdd/bios/modes_CHS.htm
http://www.pcguide.com/ref/hdd/geom/tracks_ZBR.htm
http://www.pcguide.com/ref/hdd/geom/geomLogical-c.html
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Logical Geometry 
 When you perform a drive parameter autodetection in your system BIOS setup or 

look in your new IDE/ATA hard disk's setup manual to see what the drive parameters 
are, you are seeing the logical geometry values that the hard disk manufacturer has 
specified for the drive. Since newer drives use zoned bit recording and hence have 
ten or more values for sectors per track depending on which region of the disk is 
being examined, it is not possible to set up the disk in the BIOS using the physical 
geometry. Also, the BIOS has a limit of 63 sectors per track, and all newer hard disks 
average more than 100 sectors per track, so even without zoned bit recording, there 
would be a problem. 

 Older hard disks that had simple structures and low capacity did not need special 
logical geometry. Their physical and logical geometry was the same. Take for 
example the Seagate ST-251, a 42.8 MB drive that was one of the most popular 
drives of its day. This drive's "CHS" physical geometry numbers are 820 cylinders, 6 
heads, and 17 sectors, and those numbers are what is used by a system that has 
this drive. 

 Newer drives cannot have their true geometries expressed using three simple 
numbers. To get around this issue, for disks 8.4 GB or smaller, the BIOS is given 
bogus parameters that give the approximate capacity of the disk, and the hard disk 
controller is given intelligence so that it can do automatic translation between 
the logical and physical geometry. The actual physical geometry is totally different, 
but the BIOS (and your system) need know nothing about this. Here's an example 
showing the difference between the physical and logical geometry for a sample drive, 
a 3.8 GB Quantum Fireball TM: 

http://www.pcguide.com/ref/mbsys/bios/set/ide.htm
http://www.pcguide.com/ref/hdd/geom/tracks_ZBR.htm
http://www.pcguide.com/ref/hdd/geom/geomLogical-c.html
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Logical Geometry 

 

 

 

 

 

 

 If you install this drive, as far as the system is concerned, the disk 

has 16 heads and 63 sectors on every track, and the hard disk itself 

takes care of all the "dirty work" of translating requests to their real 

internal locations. The physical geometry is totally hidden from view. 

The fact that both geometries equate to the same number of total 

sectors is not a coincidence. The purpose of the logical geometry is 

to enable access to the entire disk using terms that the BIOS can 

handle. The logical geometry could theoretically end up with a 

smaller number of sectors than the physical, but this would mean 

wasted space on the disk. It can never specify more sectors than 

physically exist, of course. 

Specification Physical Geometry Logical Geometry 

Read/Write Heads 6 16 

Cylinders (Tracks per 

Surface) 
6,810 7,480 

Sectors Per Track 122 to 232 63 

Total Sectors 7,539,840 7,539,840 
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Logical Geometry 

 Another way to get around the problem of complex internal geometry is to 

change the way the drive is addressed completely. Instead of using the 

logical geometry numbers directly, most modern drives can be accessed 

using logical block addressing (LBA). With this method a totally different 

form of logical "geometry" is used: the sectors are just given a numerical 

sequence starting with 0. Again, the drive just internally translates these 

sequential numbers into physical sector locations. So the drive above would 

have sectors numbered from 0 to 7,539,839. This is just yet another way of 

providing access to the same sectors. You can read more about LBA here.  

 Today's drives are over 8.4 GB in size and have therefore run into an 

important hard disk capacity barrier: the 8.4 GB (7.8 GiB) capacity barrier. 

The largest logical parameters that can be used for accessing a standard 

IDE/ATA drive using normal Int 13h BIOS routines are 1,024 cylinders, 256 

heads, and 63 sectors. Since the ATA standard only allows a maximum of 

16 for the number of heads, BIOS translation is used to reduce the number 

of heads and increase the number of cylinders in the specification (see here 

for details on this). The practical result of all of this, is that the largest logical 

geometry numbers for IDE/ATA drives are 16,383 cylinders, 16 heads and 

63 sectors. This yields a maximum capacity of 8.4 GB.  

http://www.pcguide.com/ref/hdd/geom/geomLogical-c.html
http://www.pcguide.com/ref/hdd/bios/modes_LBA.htm
http://www.pcguide.com/ref/hdd/bios/size_GB8.htm
http://www.pcguide.com/ref/hdd/bios/bios_Int13h.htm
http://www.pcguide.com/ref/hdd/bios/modes.htm
http://www.pcguide.com/ref/hdd/bios/modes.htm
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Logical Geometry 

 Drives larger than 8.4 GB can no longer be accessed using regular BIOS 

routines, and require extended Int 13h capabilities. There is no way to 

even represent their full capacity using regular IDE/ATA geometry numbers. 

Therefore, these drives just specify 16,383 cylinders, 16 heads and 63 

sectors to the BIOS for compatibility. Then, access to the drive is performed 

directly by the Int 13h extension routines, and the logical parameters are 

completely ignored. Here's how a modern drive, the 34.2 GB IBM Deskstar 

34GXP (model DPTA-373420), looks: 

 
Specification Physical Geometry Logical Geometry 

Read/Write Heads 10 16 

Cylinders (Tracks per 

Surface) 
17,494 16,383 

Sectors Per Track 272 to 452  63 

Total Sectors 66,835,440 16,514,064 
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Error Correcting Code (ECC) 

 The basis of all error detection and correction in hard disks is the inclusion 

of redundant information and special hardware or software to use it. Each 

sector of data on the hard disk contains 512 bytes, or 4,096 bits, of user 

data. In addition to these bits, an additional number of bits are added to 

each sector for the implementation of error correcting code or ECC 

(sometimes also called error correction code or error correcting circuits). 

These bits do not contain data; rather, they contain information about the 

data that can be used to correct any problems encountered trying to access 

the real data bits. 

 There are several different types of error correcting codes that have been 

invented over the years, but the type commonly used on PCs is the Reed-

Solomon algorithm, named for researchers Irving Reed and Gustave 

Solomon, who first discovered the general technique that the algorithm 

employs. Reed-Solomon codes are widely used for error detection and 

correction in various computing and communications media, including 

magnetic storage, optical storage, high-speed modems, and data 

transmission channels. They have been chosen because they are easier to 

decode than most other similar codes, can detect (and correct) large 

numbers of missing bits of data, and require the least number of extra ECC 

bits for a given number of data bits.  
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Read Error Severities and Error Management 

Logic 
 The hard disk's controller employs a sequence of sophisticated techniques to manage 

errors that occur when reading data from the disk. In a way, the system is kind of like a 
troubleshooting flowchart. When a problem occurs, the simplest techniques are tried 
first, and if they don't work, the problem is escalated to a higher level. Every 
manufacturer uses different techniques, so this is just a rough example guideline of how 
a hard disk will approach error management:  

 ECC Error Detection: The sector is read, and error detection is applied to check for 
any read errors. If there are no errors, the sector is passed on to the interface and the 
read is concluded successfully. 

 ECC Error Correction: The controller will attempt to correct the error using the ECC 
codes read for the sector. The data can be corrected very quickly using these codes, 
normally "on the fly" with no delay. If this is the case, the data is fixed and the read 
considered successful. Most drive manufacturers consider this occurrence common 
enough that it is not even considered a "real" read error. An error corrected at this level 
can be considered "automatically corrected". 

 Automatic Retry: The next step is usually to wait for the disk to spin around again, and 
retry the read. Sometimes the first error can be caused by a stray magnetic field, 
physical shock or other non-repeating problem, and the retry will work. If it doesn't, 
more retries may be done. Most controllers are programmed to retry the sector a certain 
number of times before giving up. An error corrected after a straight retry is often 
considered "recovered" or "corrected after retry". 

 Advanced Error Correction: Many drives will, on subsequent retries after the first, 
invoke more advanced error correction algorithms that are slower and more complex 
than the regular correction protocols, but have an increased chance of success. These 
errors are "recovered after multiple reads" or "recovered after advanced correction". 

 Failure: If the sector still cannot be read, the drive will signal a read error to the system. 
These are "real", unrecoverable read errors, the kind that result in a dreaded error 
message on the screen. 

http://www.pcguide.com/ts/x/boot/index.htm
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Read Error Severities and Error Management 

Logic 
 Even before the matter of actually reading the data comes up, drives can 

have problems with locating the track where the data is. Such a problem is 

called a seek error. In the event of a seek error, a similar management 

program is instituted as that used for read errors. Normally a series of 

retries is performed, and if the seek still cannot be performed, an 

unrecoverable seek error is generated. This is considered a drive failure, 

since the data may still be present, but it is inaccessible. 

 Every hard disk model has analysis done on it to determine the likelihood of 

these various errors. This is based on actual tests on the drive, on 

statistical analysis, and on the error history of prior models. Each drive is 

given a rating in terms of how often each error is likely to occur. Looking 

again at the Quantum Fireball TM, we see the following error rate 

specifications: 

 
Error Severity 

Worst-Case Frequency of Error 

(Number of Bits Read Between 

Occurrences) 

Automatically Corrected Not Specified 

Recovered Read Errors 1 billion (1 Gb) 

Recovered After Multiple Reads (Full 

Error Correction) 
1 trillion (1,000 Gb) 

Unrecoverable Read Errors 100 trillion (100,000 Gb) 

 

http://www.pcguide.com/ref/hdd/geom/errorRead-c.html
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Error Notification and Defect Mapping 
 Many drives are smart enough to realize that if a sector can only be read 

after retries, the chances are good that something bad may be happening 
to that sector, and the next time it is read it might not be recoverable. For 
this reason, the drive will usually do something when it has to use retries to 
read a sector (but usually not when ECC will correct the problem on the fly). 
What the drive does depends on how it is designed. 

 Modern drives support SMART, a reliability feature that tries to predict 
drive failure based on technological "leading indicators". Read errors, 
excessive numbers of retries, or problems seeking are very commonly 
included in the set of parameters used to signal impending hard drive 
doom. Activity of this sort that exceeds a safety threshold determined by the 
drive's designers may trigger a SMART warning, telling the user that the 
drive may be failing. 

 Today's hard disks will also often take corrective action on their own if they 
detect that errors are occurring. The occasional difficulty reading a sector 
would typically be ignored as a random occurrence, but if multiple retries or 
other advanced error correction procedures were needed to read a sector, 
many drives would automatically mark the sector bad and relocate its 
contents to one of the drive's spare sectors. In doing so, the drive would 
avoid the possibility of whatever problem caused the trouble worsening, 
and thereby not allow the data to be read at all on the next attempt. 

http://www.pcguide.com/ref/hdd/geom/errorMapping-c.html
http://www.pcguide.com/ref/hdd/geom/format_Defect.htm

